Content area

Abstract

Recent advances in audio understanding tasks leverage the reasoning capabilities of LLMs. However, adapting LLMs to learn audio concepts requires massive training data and substantial computational resources. To address these challenges, Retrieval-Augmented Generation (RAG) retrieves audio-text pairs from a knowledge base (KB) and augments them with query audio to generate accurate textual responses. In RAG, the relevance of the retrieved information plays a crucial role in effectively processing the input. In this paper, we analyze how different retrieval methods and knowledge bases impact the relevance of audio-text pairs and the performance of audio captioning with RAG. We propose generative pair-to-pair retrieval, which uses the generated caption as a text query to accurately find relevant audio-text pairs to the query audio, thereby improving the relevance and accuracy of retrieved information. Additionally, we refine the large-scale knowledge base to retain only audio-text pairs that align with the contextualized intents. Our approach achieves state-of-the-art results on benchmarks including AudioCaps, Clotho, and Auto-ACD, with detailed ablation studies validating the effectiveness of our retrieval and KB construction methods.

Details

1009240
Title
Audio Captioning RAG via Generative Pair-to-Pair Retrieval with Refined Knowledge Base
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 19, 2024
Section
Computer Science; Electrical Engineering and Systems Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-20
Milestone dates
2024-10-14 (Submission v1); 2024-12-19 (Submission v2)
Publication history
 
 
   First posting date
20 Dec 2024
ProQuest document ID
3117168571
Document URL
https://www.proquest.com/working-papers/audio-captioning-rag-via-generative-pair/docview/3117168571/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-21
Database
ProQuest One Academic