Content area

Abstract

The difficulties of underwater image degradation due to light scattering, absorption, and fog-like particles which lead to low resolution and poor visibility are discussed in this study report. We suggest a sophisticated hybrid strategy that combines Multi-Scale Retinex (MSR) defogging methods with Super-Resolution Convolutional Neural Networks (SRCNN) to address these problems. The Retinex algorithm mimics human visual perception to reduce uneven lighting and fogging, while the SRCNN component improves the spatial resolution of underwater photos.Through the combination of these methods, we are able to enhance the clarity, contrast, and colour restoration of underwater images, offering a reliable way to improve image quality in difficult underwater conditions. The research conducts extensive experiments on real-world underwater datasets to further illustrate the efficacy of the suggested approach. In terms of sharpness, visibility, and feature retention, quantitative evaluation which use metrics like the Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR) demonstrates notable advances over conventional techniques.In real-time underwater applications like marine exploration, underwater robotics, and autonomous underwater vehicles, where clear and high-resolution imaging is crucial for operational success, the combination of deep learning and conventional image processing techniques offers a computationally efficient framework with superior results.

Details

1009240
Title
Advanced Underwater Image Quality Enhancement via Hybrid Super-Resolution Convolutional Neural Networks and Multi-Scale Retinex-Based Defogging Techniques
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Oct 18, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-10-21
Milestone dates
2024-10-18 (Submission v1)
Publication history
 
 
   First posting date
21 Oct 2024
ProQuest document ID
3118927223
Document URL
https://www.proquest.com/working-papers/advanced-underwater-image-quality-enhancement-via/docview/3118927223/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-10-22
Database
ProQuest One Academic