It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Phytochrome interacting factors (PIFs) serve as crucial regulators in the light signal transduction pathway and also mediate light signals to regulate secondary metabolite synthesis in plants. However, the regulator role of PIFs in secondary metabolites often varies among different plants. Isorhynchophylline (IRN), an iconic secondary metabolite of Uncaria rhynchophylla, holds significant medicinal value. Low light induces the synthesis of IRN in previous research, but PIFs in U. rhynchophylla have not been studied to date. Building on this, we identified a PIF protein, UrPIF3, which possesses the typical conserved domains of the PIFs and is localized in the nucleus. Moreover, the expression level of UrPIF3 is consistently positively correlated with the expression of two key enzyme genes (UrSGD and UrSTR) in the IRN biosynthesis pathway, regardless of whether under low light or restoring light conditions. Yeast one-hybrid and dual-luciferase assays further demonstrated that UrPIF3 can directly upregulate UrSGD. Conversely, silencing UrPIF3 inhibits IRN synthesis, and significantly reduces the expression levels of UrSGD and UrSTR. In summary, our results suggest that under low light conditions, UrPIF3 can directly upregulate UrSGD and indirectly upregulate UrSTR, thereby promoting the synthesis of IRN.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Guizhou Minzu University, School of Chinese Ethnic Medicine, Guiyang, Guizhou, China (GRID:grid.443389.1) (ISNI:0000 0000 9477 4541)
2 Guizhou University, School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, Guizhou, China (GRID:grid.443382.a) (ISNI:0000 0004 1804 268X)
3 Guizhou Academy of Agricultural Sciences, Institute of Sericulture Science, Guiyang, China (GRID:grid.464326.1) (ISNI:0000 0004 1798 9927)