It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
With technology development, the growing self-communicating devices in IoT networks require specific naming and identification, mainly provided by IPv6 addresses. The IPv6 address in the IoT network is generated by using the stateless auto address configuration (SLAAC) mechanism, and its uniqueness is ensured by the DAD protocol. Recent research suggests that IPv6 deployment can be a risky decision due to the existing SLAAC-based addressing scheme and the DAD protocol being prone to reconnaissance and denial of service (DoS) attacks. This research paper proposes a new IPv6 generation scheme with an improved secure DAD mechanism to address these problems. The proposed addressing scheme generates IPv6 addresses by taking a hybrid approach based on vendor id of medium access control (MAC) address, physical location, and arbitrary random numbers, which mitigates reconnaissance attacks by malicious nodes. To prevent the DAD process from DoS attacks, hybrid values of interface identifier (IID) are multicast instead of actual values. The proposed scheme is evaluated under reconnaissance and DoS attacks in the presence of malicious nodes. The evaluation results demonstrate that the proposed method effectively mitigates reconnaissance and DoS attacks, outperforming the EUI-64 and SEUI-64 schemes in terms of address success rate (ASR), energy consumption, and communication overhead. Specifically, the proposed method significantly reduces the average probing rate for scanning the existence of an IPv6 address, with only a 1% probing rate compared to SEUI-64’s 5% and EUI-64’s 100%. Furthermore, the additional communication overhead introduced by the proposed method is less than 13% and 11% compared to EUI-64 and SEUI-64, respectively. Additionally, the energy consumption required to assign an IPv6 address using the proposed method is lower by 12% and 5% when compared to EUI-64 and SEUI-64, respectively. These findings highlight the effectiveness of the proposed method in enhancing security and optimizing resource utilization in IPv6 addressing.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Manipal University Jaipur, Department of IoT and Intelligent Systems, Jaipur, India (ISNI:0000 0004 4661 2475)
2 Galgotias University, School of Computing Sciences and Engineering, Greater Noida, India (GRID:grid.448824.6) (ISNI:0000 0004 1786 549X)
3 J.S.S. Academy of Technical Education, Department of Computer Science and Engineering, Noida, India (GRID:grid.418403.a) (ISNI:0000 0001 0733 9339)
4 Shiv Nadar University, Delhi-National Capital Region NCR, Delhi, India (GRID:grid.410868.3) (ISNI:0000 0004 1781 342X)
5 Leeds Beckett University, School of Built Environment, Engineering and Computing, Leeds, UK (GRID:grid.10346.30) (ISNI:0000 0001 0745 8880)