Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Escitalopram (ESC) is commonly prescribed as an antidepressant to enhance serotonin levels in the brain, effectively addressing conditions such as depression and anxiety. The COVID-19 pandemic, along with ongoing mental health crises, has exacerbated the prevalence of these disorders, largely due to factors such as social isolation, fear of the virus, and financial difficulties. This study presents the enhancement of a glassy carbon electrode (GC) through the incorporation of hydrochar (HDC) derived from spent coffee grounds and copper nanoparticles (CuNPs) for the detection of ESC in synthetic urine. Characterization of the nanocomposite was conducted using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and cyclic voltammetry (CV). The analytical parameters were systematically optimized, and a sensing platform was utilized for the quantification of ESC via square-wave voltammetry (SWV). The established linear range was found to be between 1.0 µmol L−1 and 50.0 µmol L−1, with a limit of detection (LOD) of 0.23 µmol L−1. Finally, an electrochemical sensor was employed to measure ESC levels in synthetic urine, yielding recovery rates ranging from 91.7% to 94.3%. Consequently, the HDC-CuNPs composite emerged as a promising, sustainable, and cost-effective alternative for electroanalytical applications.

Details

Title
Coffee Biomass-Based Carbon Material for the Electrochemical Determination of Antidepressant in Synthetic Urine
Author
Francisco Contini Barreto 1   VIAFID ORCID Logo  ; Naelle Kita Mounienguet 1 ; Ito, Erika Yukie 1   VIAFID ORCID Logo  ; He, Quan 2   VIAFID ORCID Logo  ; Cesarino, Ivana 1   VIAFID ORCID Logo 

 School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; [email protected] (F.C.B.); [email protected] (N.K.M.); [email protected] (E.Y.I.) 
 Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada; [email protected] 
First page
205
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22279040
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3120545278
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.