Content area

Abstract

Examining the effectiveness of machine learning techniques in analyzing engineering students’ decision-making processes through topic modeling during simulation-based design tasks is crucial for advancing educational methods and tools. Thus, this study presents a comparative analysis of different supervised and unsupervised machine learning techniques for topic modeling, along with human validation. Hence, this manuscript contributes by evaluating the effectiveness of these techniques in identifying nuanced topics within the argumentation framework and improving computational methods for assessing students’ abilities and performance levels based on their informed decisions. This study examined the decision-making processes of engineering students as they participated in a simulation-based design challenge. During this task, students were prompted to use an argumentation framework to articulate their claims, evidence, and reasoning, by recording their informed design decisions in a design journal. This study combined qualitative and computational methods to analyze the students’ design journals and ensured the accuracy of the findings through the researchers’ review and interpretations of the results. Different machine learning models, including random forest, SVM, and K-nearest neighbors (KNNs), were tested for multilabel regression, using preprocessing techniques such as TF-IDF, GloVe, and BERT embeddings. Additionally, hyperparameter optimization and model interpretability were explored, along with models like RNNs with LSTM, XGBoost, and LightGBM. The results demonstrate that both supervised and unsupervised machine learning models effectively identified nuanced topics within the argumentation framework used during the design challenge of designing a zero-energy home for a Midwestern city using a CAD/CAE simulation platform. Notably, XGBoost exhibited superior predictive accuracy in estimating topic proportions, highlighting its potential for broader application in engineering education.

Details

1009240
Business indexing term
Title
Evaluating the Performance of Topic Modeling Techniques with Human Validation to Support Qualitative Analysis
Author
Romero, Julian D 1   VIAFID ORCID Logo  ; Feijoo-Garcia, Miguel A 2   VIAFID ORCID Logo  ; Nanda, Gaurav 1   VIAFID ORCID Logo  ; Newell, Brittany 1   VIAFID ORCID Logo  ; Magana, Alejandra J 2   VIAFID ORCID Logo 

 School of Engineering Technology, Purdue University, 401 N. Grant St., West Lafayette, IN 47907, USA; [email protected] (J.D.R.); [email protected] (G.N.); [email protected] (B.N.) 
 Department of Computer and Information Technology, Purdue University, 401 N. Grant St., West Lafayette, IN 47907, USA; [email protected] 
Publication title
Volume
8
Issue
10
First page
132
Publication year
2024
Publication date
2024
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
e-ISSN
25042289
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2024-10-08
Milestone dates
2024-07-26 (Received); 2024-09-10 (Accepted)
Publication history
 
 
   First posting date
08 Oct 2024
ProQuest document ID
3120547676
Document URL
https://www.proquest.com/scholarly-journals/evaluating-performance-topic-modeling-techniques/docview/3120547676/se-2?accountid=208611
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-10-25
Database
2 databases
  • Coronavirus Research Database
  • ProQuest One Academic