Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Blue (400–500 nm) and red (600–700 nm) light regions have been investigated for their effects on photosynthesis and plant growth, yet evidence for specific blue light wavelengths in plant research is lacking. Investigations into amber (595 nm) light are similarly limited. To ‘shed light’ on these two important wavelengths, this study investigated the combined effects of blue and amber light on plant growth and development in two model plants: tomato (Solanum lycopersicum cv. Beefsteak) and lettuce (Lactuca sativa cv. Breen). Plant growth responses were determined with four light treatments: B+BA (blue + broad amber, 455–602 nm), RB-NA (royal blue + narrow amber, 430–602 nm), RB-BA (royal blue + broad amber, 423–595 nm), and high-pressure sodium at a PPFD of 250 µmol m−2 s−1. After 21 days, the highest fresh and dry mass for both plant species was obtained under the RB-BA light treatment. Shifting the blue wavelength from 430 nm to 455 nm with broad amber lighting led to 40% less fresh mass for tomatoes, whereas only an approximate 5% reduction in fresh mass was observed for lettuce plants. Our findings demonstrate that an alternate and combined blue + amber light spectrum is effective for optimizing plant productivity.

Details

Title
Plant Growth Optimization Using Amber Light Supplemented with Different Blue Light Spectra
Author
Trumpler, Keli; Bo-Sen, Wu  VIAFID ORCID Logo  ; Addo, Philip Wiredu  VIAFID ORCID Logo  ; MacPherson, Sarah; Lefsrud, Mark
First page
1097
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23117524
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3120631232
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.