Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Underwater optical wireless communication (UOWC) is a field of research that has gained popularity with the development of unmanned underwater vehicle (UUV) technologies. Its utilization is crucial in offshore industries engaging in sustainable alternatives for food production and energy security. Although UOWC can meet the high data rate and low latency requirements of underwater video transmission for UUV operations, the links that enable such communication are affected by the inhomogeneous light attenuation and the presence of sunlight. Here, we present how the underwater spectral distribution of the light field can be modeled along the depths of eight stratified oceanic water types. We considered other established models, such as SPCTRL2, Haltrin’s single parameter model for inherent optical properties, and a model for the estimation of the depth distribution of chlorophyll-a, and present insights based on transmission wavelength for the maximum signal-to-noise ratio (SNR) under different optical link parameter combinations such as beam divergence and transmit power under “daytime” and “nighttime” conditions. The results seem to challenge the common notion that the blue-green spectrum is the most suitable for underwater optical communication. We highlight a unique relationship between the transmission wavelength for the optimal SNR and the link parameters and distance, which varies with depth depending on the type of oceanic water stratification. Our analyses further highlighted potential implications for solar discriminatory approaches and strategies for routing in cooperative optical wireless networks in the photic region.

Details

Title
Optimal Signal Wavelengths for Underwater Optical Wireless Communication under Sunlight in Stratified Waters
Author
Waduge, Tharuka Govinda 1   VIAFID ORCID Logo  ; Boon-Chong Seet 1   VIAFID ORCID Logo  ; Vopel, Kay 2   VIAFID ORCID Logo 

 Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand; [email protected] 
 School of Science, Auckland University of Technology, Auckland 1010, New Zealand; [email protected] 
First page
54
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22242708
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3120678592
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.