Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The world’s forests are being increasingly disturbed from exposure to the compounding impacts of land use and climate change, in addition to natural disturbance regimes. Boreal forests have a lower level of deforestation compared to tropical forests, and while they have higher levels of natural disturbances, the accumulated impact of forest management for commodity production coupled with worsening fire weather conditions and other climate-related stressors is resulting in ecosystem degradation and loss of biodiversity. We used satellite-based time-series analysis of two canopy indices—canopy photosynthesis and canopy water stress—to calculate an index that maps the relative stability of forest canopies in the Canadian provinces of Ontario and Quebec. By drawing upon available spatial time-series data on logging, wildfire, and insect infestation impacts, we were able to attribute the causal determinants of areas identified as having unstable forest canopy. The slope of the two indices that comprise the stability index also provided information as to where the forest is recovering from prior disturbances. The stability analyses and associated spatial datasets are available in an interactive web-based mapping app. that can be used to map disturbed forest canopies and the attribution of disturbances to human or natural causes. This information can assist decision-makers in identifying areas that are potentially ecologically degraded and in need of restoration and those stable areas that are a priority for protection.

Details

Title
Insights into Boreal Forest Disturbance from Canopy Stability Index
Author
Mackey, Brendan 1   VIAFID ORCID Logo  ; Hugh, Sonia 1 ; Norman, Patrick 1   VIAFID ORCID Logo  ; Rogers, Brendan M 2   VIAFID ORCID Logo  ; Dellasala, Dominick 3   VIAFID ORCID Logo 

 Griffith University, Southport, QLD 4222, Australia; [email protected] (S.H.); [email protected] (P.N.) 
 Woodwell Climate Research Centre, Falmouth, MA 02540, USA; [email protected] 
 Wild Heritage, A Project of Earth Island Institute, Berkeley, CA 94704, USA; [email protected] 
First page
1644
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2073445X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3120683172
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.