Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Transverse mode control of laser intracavity oscillation is crucial for generating high-purity cylindrical vector beams (CVBs). We utilized the mode conversion and mode selection properties of two-mode long-period fiber gratings (TM-LPFGs) and two-mode fiber Bragg gratings (TM-FBGs) to achieve intracavity hybrid-mode oscillations of LP01 and LP11 from an all-few-mode fiber laser. A mode-locked pulse output with a repetition rate of 12.46 MHz and a signal-to-noise ratio of 53 dB was achieved with a semiconductor saturable absorber mirror (SESAM) for mode-locking, at a wavelength of 1550.32 nm. The 30 dB spectrum bandwidth of the mode-locked pulse was 0.13 nm. Furthermore, a high-purity CVB containing radially polarized and azimuthally polarized LP11 modes was generated. The purity of the obtained CVB was greater than 99%. The high-purity CVB pulses have great potential for applications in optical tweezers, high-speed mode-division multiplexing communication, and more.

Details

Title
Generation of High-Quality Cylindrical Vector Beams from All-Few-Mode Fiber Laser
Author
Xiao, Pingping 1 ; Tang, Zhen 2 ; Wang, Fei 1 ; Lu, Yaqiong 2 ; Zhang, Zuxing 2   VIAFID ORCID Logo 

 Department of Electronic Information Engineering, College of Physics and Engineering Technology, Yichun University, Yichun 336000, China; [email protected] (P.X.); 
 College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China 
First page
975
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23046732
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3120743035
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.