Content area

Abstract

To alleviate the suboptimal performance of belief propagation (BP) decoding of short low-density parity-check (LDPC) codes, a plethora of improved decoding algorithms has been proposed over the last two decades. Many of these methods can be described using the same general framework, which we call ensemble decoding: A set of independent constituent decoders works in parallel on the received sequence, each proposing a codeword candidate. From this list, the maximum likelihood (ML) decision is designated as the decoder output. In this paper, we qualitatively and quantitatively compare different realizations of the ensemble decoder, namely multiple-bases belief propagation (MBBP), automorphism ensemble decoding (AED), scheduling ensemble decoding (SED), noise-aided ensemble decoding (NED) and saturated belief propagation (SBP). While all algorithms can provide gains over traditional BP decoding, ensemble methods that exploit the code structure, such as MBBP and AED, typically show greater performance improvements.

Details

1009240
Identifier / keyword
Title
A Comparative Study of Ensemble Decoding Methods for Short Length LDPC Codes
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Oct 31, 2024
Section
Computer Science; Mathematics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-11-01
Milestone dates
2024-10-31 (Submission v1)
Publication history
 
 
   First posting date
01 Nov 2024
ProQuest document ID
3123151807
Document URL
https://www.proquest.com/working-papers/comparative-study-ensemble-decoding-methods-short/docview/3123151807/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-11-02
Database
ProQuest One Academic