It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Keypoint detectors and descriptors are essential for identifying points and their correspondences in overlapping images, being fundamental inputs for many subsequent processes, including Pose Estimation, Visual Odometry, vSLAM, Object Detection, Object Tracking, Augmented Reality, Image Mosaicking, and Panorama Stitching. Techniques like SIFT, SURF, KAZE, and ORB aim to identify repeatable, distinctive, efficient, and local features. Despite their robustness, some keypoints, especially those detected in fisheye cameras, do not contribute to the solution, and may introduce outliers or errors. Fisheye cameras capture a broader view, leading to more keypoints at infinity and potential errors. Filtering these keypoints is important to maintain consistent input observations. Various methods, including gradient-based sky region detection, adaptive algorithms, and K-means clustering, addressed this issue. Semantic segmentation could be an effective alternative, but it requires extensive computational resources. Machine learning provides a more flexible alternative, processing large data volumes with moderate computational power and enhancing solution robustness by filtering non-contributing keypoints already detected in these vision-based approaches. In this paper we present and assess a machine learning model to classify keypoints as sky or non-sky, achieving an accuracy of 82.1%.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Department of Cartography, Faculty of Sciences and Technology, São Paulo State University (UNESP), São Paulo 19060-900, Brazil; Department of Cartography, Faculty of Sciences and Technology, São Paulo State University (UNESP), São Paulo 19060-900, Brazil
2 Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute (FGI), National Land Survey of Finland, Espoo, Finland; Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute (FGI), National Land Survey of Finland, Espoo, Finland