It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Film-thermoelectric cooling devices are expected to provide a promising active thermal management solution with the continues increase of the power density of integrated circuit chips and other electronic devices. However, because the microstructure-related performance of thermoelectric films has not been perfectly matched with the device configuration, the potential of planar devices on chip heat dissipation has still not been fully exploited. Here, by liquid Te assistant growth method, highly (00 l) orientated Bi2Te3-based films which is comparable to single crystals are obtained in polycrystal films in this work. The high mobility stem from high orientation and low lattice thermal conductivity resulting from excess Te induced staggered stacking faults leads to high in-plane zT values ~1.53 and ~1.10 for P-type Bi0.4Sb1.6Te3 and N-type Bi2Te3 films, respectively. The planar devices basing on the geometrically designed high orientation films produce a remarkable temperature reduction of ~8.2 K in the hot spot elimination experiment, demonstrating the great benefit of Te assistant growth method for oriented planar Bi2Te3 films and planar devices devices design, and also bring great enlightenment to the next generation active thermal management for integrated circuits.
The authors fabricate highly (00l) orientated Bi2Te3-based films by liquid Te assistant growth method, showing high mobility stemming from high orientation and low lattice thermal conductivity, resulting from excess Te induced staggered stacking faults.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Chinese Academy of Sciences, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Shenzhen, China (GRID:grid.9227.e) (ISNI:0000000119573309)
2 Xi’an Jiaotong University, State Key Laboratory for Mechanical Behavior of Materials, Xi’an, China (GRID:grid.43169.39) (ISNI:0000 0001 0599 1243)
3 Shanghai University, Materials Genome Institute, Shanghai, China (GRID:grid.39436.3b) (ISNI:0000 0001 2323 5732)