Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A highly sensitive optical fiber gas pressure sensor with temperature monitoring is proposed and demonstrated. It is based on a slightly tapered fiber with an inner micro-cavity forming an in-fiber Mach–Zehnder interferometer (MZI), and a micro-channel is drilled into the lateral wall of the in-fiber micro-cavity using a femtosecond laser to allow gas to flow in. Due to the dependence of the refractive index (RI) of air inside the micro-cavity on its gas pressure and the high RI sensitivity of the MZI, the device is extremely sensitive to gas pressure. To prevent fiber breakage, the MZI is housed in a silicate capillary tube with an air inlet. Multiple modes are excited by slightly tapering the inner micro-cavity, and the resonance dips in the sensor’s transmission spectrum feature different linear gas pressure and temperature responses, so a sensitivity matrix algorithm can be used to achieve simultaneous demodulation of two parameters, thus resolving the temperature crosstalk. As expected, the experimental results demonstrated the reliability of the matrix algorithm, with pressure sensitivity reaching up to ~−12.967 nm/MPa and temperature sensitivity of ~89 pm/°C. The features of robust mechanical strength and high air pressure sensitivity with temperature monitoring imply that the proposed sensor has good practical and application prospects.

Details

Title
Highly Sensitive Gas Pressure Sensing with Temperature Monitoring Using a Slightly Tapered Fiber with an Inner Micro-Cavity and a Micro-Channel
Author
Sun, Changwei 1   VIAFID ORCID Logo  ; Yu, Fen 2 ; Chen, Huifang 2 ; Wang, Dongning 3 ; Xu, Ben 2 

 School of Electronic and Electrical Engineering, Bengbu University, Bengbu 233030, China 
 College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China; [email protected] (F.Y.); [email protected] (H.C.) 
 College of Unban Transportation and Logistics, Shenzhen Technology University, Shenzhen 518118, China; [email protected] 
First page
6844
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3126268560
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.