Abstract

Background

The maximal sensitivity for local pairwise alignment makes the Smith-Waterman algorithm a popular choice for protein sequence database search. However, its quadratic time complexity makes it compute-intensive. Unfortunately, current state-of-the-art software tools are not able to leverage the massively parallel processing capabilities of modern GPUs with close-to-peak performance. This motivates the need for more efficient implementations.

Results

CUDASW++4.0 is a fast software tool for scanning protein sequence databases with the Smith-Waterman algorithm on CUDA-enabled GPUs. Our approach achieves high efficiency for dynamic programming-based alignment computation by minimizing memory accesses and instructions. We provide both efficient matrix tiling, and sequence database partitioning schemes, and exploit next generation floating point arithmetic and novel DPX instructions. This leads to close-to-peak performance on modern GPU generations (Ampere, Ada, Hopper) with throughput rates of up to 1.94 TCUPS, 5.01 TCUPS, 5.71 TCUPS on an A100, L40S, and H100, respectively. Evaluation on the Swiss-Prot, UniRef50, and TrEMBL databases shows that CUDASW++4.0 gains over an order-of-magnitude performance improvements over previous GPU-based approaches (CUDASW++3.0, ADEPT, SW#DB). In addition, our algorithm demonstrates significant speedups over top-performing CPU-based tools (BLASTP, SWIPE, SWIMM2.0), can exploit multi-GPU nodes with linear scaling, and features an impressive energy efficiency of up to 15.7 GCUPS/Watt.

Conclusion

CUDASW++4.0 changes the standing of GPUs in protein sequence database search with Smith-Waterman alignment by providing close-to-peak performance on modern GPUs. It is freely available at https://github.com/asbschmidt/CUDASW4.

Details

Title
CUDASW++4.0: ultra-fast GPU-based Smith–Waterman protein sequence database search
Author
Schmidt, Bertil; Kallenborn, Felix; Chacon, Alejandro; Hundt, Christian
Pages
1-24
Section
Software
Publication year
2024
Publication date
2024
Publisher
BioMed Central
e-ISSN
14712105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3126412289
Copyright
© 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.