Content area

Abstract

The maximum likelihood (ML) decoder in the two-dimensional surface code with generic unitary errors is governed by a statistical mechanics model with complex weights, which can be simulated via (1+1)D transfer matrix contraction. Information loss with an increasing error rate manifests as a ferromagnetic-to-paramagnetic transition in the contraction dynamics. In this work, we establish entanglement as a separate obstruction to decoding; it can undergo a transition from area- to volume-law scaling in the transfer matrix contraction with increasing unitary error rate. In particular, the volume-law entanglement can coexist with ferromagnetic order, giving rise to a phase in which the encoded information is retained yet is effectively undecodable. We numerically simulate the ML decoding in the surface code subject to both single- and two-qubit Pauli-X rotations and obtain a phase diagram that contains a ferromagnetic area-law, a paramagnetic volume-law, and a potential ferromagnetic volume-law phase. We further show that, starting from the paramagnetic volume-law phase, tilting the single-qubit rotation away from the X-axis couples the stat-mech models for X and Z errors and can lead to a ferromagnetic volume-law phase in which, although Z errors remain correctable, the encoded classical information is hard to recover. To perform numerical simulations, we develop an algorithm for syndrome sampling based on the isometric tensor network representation of the surface code.

Details

1009240
Title
Phases of decodability in the surface code with unitary errors
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Nov 8, 2024
Section
Condensed Matter; Quantum Physics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-11-11
Milestone dates
2024-11-08 (Submission v1)
Publication history
 
 
   First posting date
11 Nov 2024
ProQuest document ID
3126805498
Document URL
https://www.proquest.com/working-papers/phases-decodability-surface-code-with-unitary/docview/3126805498/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-11-12
Database
ProQuest One Academic