Full text

Turn on search term navigation

© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Geochemistry is usually the computational bottleneck in coupled reactive transport simulations, which hampers the complexity of the systems and of the processes they can investigate. In recent years, promising speedups have been obtained by substituting the numerical solution of geochemical models with approximated surrogates borrowed from artificial intelligence and machine learning (AI/ML). In the framework of the DONUT/EURAD project a set of benchmarks were defined to assess the performance and the accuracy of different surrogate approaches in settings relevant to the safety assessment of nuclear waste repositories, such as the surface complexation and exchange of U(VI) on clay. In this context, this work introduces am original surrogate modelling approach based on recursive partitioning of parameter space, which exploits prior domain knowledge for the training. The surrogate, which can be represented as a decision tree, hence the DecTree name, performs dimensionality reduction by identifying functional relationships between outputs and input variables using a straightforward non-monotonic extension of the Spearman's rank correlation coefficient. New predictions are then interpolated from the partitioned training data. Applied to a low-dimensional geochemical model, DecTree shows virtually no training time and excellent accuracy, ensuring a throughput of around 500 000 predictions per second on a single CPU core.

Details

Title
DecTree: a physics-based geochemical surrogate for surface complexation of uranium on clay
Author
Marco De Lucia 1   VIAFID ORCID Logo 

 GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 
Pages
45-54
Publication year
2024
Publication date
2024
Publisher
Copernicus GmbH
ISSN
16807340
e-ISSN
16807359
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3126807449
Copyright
© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.