Content area

Abstract

Classical simulations of quantum circuits are essential for verifying and benchmarking quantum algorithms, particularly for large circuits, where computational demands increase exponentially with the number of qubits. Among available methods, the classical simulation of quantum circuits inspired by density functional theory -- the so-called QC-DFT method, shows promise for large circuit simulations as it approximates the quantum circuits using single-qubit reduced density matrices to model multi-qubit systems. However, the QC-DFT method performs very poorly when dealing with multi-qubit gates. In this work, we introduce a novel CNOT "functional" that leverages neural networks to generate unitary transformations, effectively mitigating the simulation errors observed in the original QC-DFT method. For random circuit simulations, our modified QC-DFT enables efficient computation of single-qubit marginal measurement probabilities, or single-qubit probability (SQPs), and achieves lower SQP errors and higher fidelities than the original QC-DFT method. Despite some limitations in capturing full entanglement and joint probability distributions, we find potential applications of SQPs in simulating Shor's and Grover's algorithms for specific solution classes. These findings advance the capabilities of classical simulations for some quantum problems and provide insights into managing entanglement and gate errors in practical quantum computing.

Details

1009240
Title
Efficient Classical Computation of Single-Qubit Marginal Measurement Probabilities to Simulate Certain Classes of Quantum Algorithms
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 19, 2024
Section
Computer Science; Quantum Physics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-20
Milestone dates
2024-11-11 (Submission v1); 2024-12-09 (Submission v2); 2024-12-19 (Submission v3)
Publication history
 
 
   First posting date
20 Dec 2024
ProQuest document ID
3127418683
Document URL
https://www.proquest.com/working-papers/efficient-classical-computation-single-qubit/docview/3127418683/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-21
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic