It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The development of shale oil reservoirs is significant for the petroleum industry. Fluids in shale oil play exist in nanoscale pores, and the interaction between fluids and shale rock surface walls can lead to the expansion and deformation of the entire pore medium thus affecting the development and production of oil reservoirs. We used an organic matter (graphene) pore model to represent the nanopore structure of shale reservoir. Methane, n-hexane and n-dodecane multi-component fluids were used to characterize shale oil. The adsorption and deformation law of multi-component shale oil in the nanopore was systematically studied by using the molecular simulation method. The results showed that the adsorption of multi-component shale oil in organic nanopores was positively correlated with pressure. The total adsorption amount increased with the increase of pressure. Firstly, when the ratio of CO2 was higher, it was more favorable for the development of crude oil and the large amount of CO2 sequestration. The adsorption amount was negatively correlated with temperature. Secondly, the adsorption amount of multicomponent shale oil is proportional to the pore size; The adsorption amount of large-size pore model is more sensitive to pressure changes than that of small-size pore model. Finally, the trend of adsorption deformation volume is similar to that of adsorption volume, which decreases with the increase of temperature. The shale deformation caused by CO2 injection at this time is much smaller than the other component ratios, indicating that the magnitude of deformation is positively related to the adsorption volume.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Changzhou University, School of Petroleum and Natural Gas Engineering, Changzhou, China (GRID:grid.440673.2) (ISNI:0000 0001 1891 8109)
2 PetroChina Company Limited, Research Institute of Petroleum Exploration & Development, Haidian District, China (GRID:grid.464414.7) (ISNI:0000 0004 1765 2021)