目前,癌症依然是全世界的主要死因之一。2022年,癌症导致全球近六分之一(近1000万)人 死亡,肺癌的死亡人数位居癌症死亡谱首位,并且新发肺癌病例仍逐年上升[1,2],为家庭及国家卫生经济造成沉重负担[3],是我国人民生命健康的巨大威胁。2015年广州市肺癌发病率达58/10万,死亡率达47/10万[4,5],严重危害广州市居民的健康。
由于肺癌的起病较为隐匿,早期没有典型症状,临床确诊时以晚期居多,我国肺癌年龄标化的5年生存率在2018-2020年(山东地区)仅为24.4%[6],预后极差。而0-I期肿瘤患者在完全切除肿瘤后的5年生存率可达到或接近100%[7],预后明显改善。胸部低剂量计算机断层扫描(low-dose computed tomography, LDCT)对于肺癌筛查有较高的灵敏性,相较胸片能显著增加肺癌(尤其是I期肺癌)的检出率,2021年《中国肺癌筛查与早诊早治指南》与全球肺癌筛查指南及专家共识一致表明LDCT为目前最佳筛查手段[8-17]。采用LDCT进行肺癌筛查并对疑似恶性病灶进行早期干预,能有效降低肺癌相关死亡率,改善生存状况[18]。因此,通过肺癌筛查实现“早诊早治”是改善肺癌的预后、提高生存率、降低死亡率的重要措施[19]。
以往的肺癌筛查项目主要针对高危人群,特别是吸烟者[19-22],而不吸烟的年轻人通常被排除在现有筛查指南之外[23-25]。然而,近年来的研究[25-27]开始关注年轻女性和不吸烟人群中肺癌的增加,尤其是发现非吸烟女性中肺癌病例逐渐增多,其病因尚未完全明了。研究[28,29]显示,在东亚和南亚,60%-80%的非小细胞肺癌(non-small cell lung cancer, NSCLC)女性患者从未吸烟。尽管如此,我国目前尚无专门针对女性群体的肺癌筛查研究。目前研究[30,31]表明,燃煤和烹饪油烟可能是不吸烟女性中肺癌发病的关键因素,但对于女性肺癌的更多高危因素还需进一步探索。因此,分析女性筛查人员的肺癌发病率以及探究女性肺癌的高危因素对于制定符合我国乃至亚洲非吸烟女性的肺癌筛查标准具有重要意义。
本研究基于广州市越秀区“爱肺计划”,该项目使用LDCT对广州市越秀区4条街道居民进行肺癌筛查,本研究拟探讨该地区40岁以上女性人群的肺癌发病率及高危因素。
1 资料与方法
1.1 研究对象
“爱肺计划”项目采用LDCT进行肺癌筛查,于2015年12月至2021年7月完成受试者的招募和筛选,并对其跟踪调查至2022年8月,以获得肺癌确诊信息。为了招募研究中的参与者,项目团队采用多种方法,包括分发信息传单、通过电话和电视广播进行询问、定期组织以肺癌筛查为重点的健康论坛、通过社交媒体平台进行推广、举办一系列教育研讨会和网络研讨会、定制宣传材料以满足不同人群的需求等,并与社区组织建立合作伙伴关系,以促进宣传和转诊。有兴趣参与的个人在社区中心登记个人详细信息,并填写知情同意书。4个街道的筛查在5年半时间里广泛宣传和通知,对自愿入组的志愿者进行一次CT检查。4位女性居民多次参与筛查,分析数据时已剔除,确保入组人员在5年半期间无重复。(1)入选标准:(1.)广州市越秀区人民街、北京街、珠光街、光塔街共4条街道40-74岁女性常住居民,年龄参考既往研究和指南推荐[17,32-34],常住居民定义为连续居住半年(包括半年)以上;(2.)同意接受LDCT扫描。(2)排除标准[19,35]:(1.)过去5年内被诊断为癌症或接受癌症相关治疗(非黑色素瘤皮肤癌除外);(2.)过去1年内做过胸部CT;(3.)有癌症相关症状(如咯血、呼吸困难、无法爬两层楼梯)。各环节脱落人数见图1。本研究经广州医科大学第一附属医院医学伦理委员会批准通过(批号:YKLS2015-25),所有参与者均已自愿签署知情同意书。
1.2 研究方法
1.2.1 问卷调查 在完成知情同意后,所有参与者均需完成一份自我报告问卷(具体问卷及变量的客观定义见http://www.lungca.org/files/2024s23survey.doc),其中包括人 统计学、吸烟史、职业暴露、个人和家庭病史的详细信息。该试验已在ClinicalTrails.gov注册(No.NCT04938804),并根据方案进行。
1.2.2 筛查方法和阳性判定标准 完成问卷后1个月内,所有参与者前往广州医科大学第一附属医院进行LDCT扫描。仪器采用德国埃尔朗根西门子Definition AS+ 128或256排螺旋CT扫描仪,所有受检者均取仰卧位,双手上举,于吸气末单次屏气完成扫描,扫描范围为肺尖至后肋膈角尖端水平。设置管电压100-110 kV,管电流30 mAs,薄层重建层厚为1.0 mm。根据2018版《中国肺癌低剂量螺旋CT筛查指南》的建议[36],筛查阳性判定标准为直径≥8 mm纯磨玻璃结节或直径≥5 mm部分实性和实性非钙化结节以及≥30 mm肿块。阳性结节检出率计算公式为:阳性结节检出率(%)=(检出阳性结节人数/总筛查人数)×100%。
1.2.3 诊治与随访 我们对不确定病变的受试者进行连续LDCT随访,阳性筛查结果的管理由经验丰富的胸科临床医生在Fleischner学会和中华医学会共识的指导下进行[34,37],胸科临床医生将会慎重考虑对这些受试者进行包括高分辨CT、正电子发射型计算机断层显像(positron emission computed tomography, PET)/CT、有创性检查等诊断检查。所有患者术前均予进行多学科会诊。病理诊断将作为金标准进行组织学分型及分期,可分为腺癌(包括管状腺癌、乳头状腺癌、细支气管癌、肺泡细胞癌等)、鳞癌(包括梭形细胞癌、淋巴上皮癌、基底细胞癌等)、大细胞肺癌和小细胞肺癌。分期的依据是美国癌症联合委员会(American Joint Committee on Carcer, AJCC)和国际癌症控制联盟(Union for International Cancer Control, UICC)制定的第8版肺癌肿瘤原发灶-淋巴结-转移(tumor-node-metastasis, TNM)分期系统[38]。活检结果由2名病理学专家解释,他们对患者的临床特征和血清测量结果不知情。随后临床医生将综合我国的肺癌临床诊疗指南[39]及国际肺癌研究的进展[40]对肺癌确诊患者的治疗方案进行临床决策。各年龄段肺癌检出率计算公式为:各年龄段肺癌检出率(%)=(该年龄段确诊人数/该年龄段总筛查人数)×100%。
项目工作人员对阴性结果的参与者也进行了跟踪随访,记录筛查后的管理和生存情况,跟踪方式包括但不限于电话随访、社区走访等。数据分析截止日期为2022年8月31日,中位随访时间为3.4年(IQR:2.7-4.5年)。失访率在前12个月为0.7%,截止24个月时增加到1.6%,到截止日期累计达7.1%。失访的主要原因是对辐射暴露的担忧、后续随访的经济负担大、对随访电话的不响应以及没有明确原因的自愿退出。值得注意的是,间隔癌定义为行基线LDCT筛查时未出现(或未被发现)阳性结节但2年内病理确诊为癌[35,41]。疑似病例定义为存在阳性结节并被临床医生推荐进行病理活检但拒绝接受活检的人群。
1.2.4 质量控制 (1)广州医科大学第一附属医院对所有工作人员进行资质审核并开展针对性的技术培训,包括临床筛查技术培训,提高工作人员(包括调查人员、技术人员)对肺癌早筛的认识和职业能力,确保参与者获得正确的问卷填写指引以及后续随访质量,避免漏诊误诊。(2)定期进行质控,严格控制数据质量,完成问卷后须经质控员确认方可整理归档,且最终剔除回答数< 2%的变量。在本研究中,只有2个变量(初婚年龄和哮喘患者在地面行走或爬楼梯时呼吸短促)由于缺失值超过20%而最终被排除,其中初婚年龄缺失比例为1.66%(1448/6256),哮喘患者在地面行走或爬楼梯时呼吸短促缺失比例为37.23%(51/137),阳性病例和确诊病例有个别筛查者缺失问卷填写,但比例不满10%,因此用MICE包多重插补法补充完整[42,43]。(3)LDCT筛查结果由经验丰富的影像医学专科医师进行阅片,若无法明确判定,则交由高年资的副主任或以上职称影像医学专科医师进行复核。
1.2.5 统计学方法 肺癌确诊数据的截止时间为2022年8月。对于正态分布与非正态分布的连续变量分别采用均数(标准差)及中位数(四分位间距)表示,并使用t检验或秩和检验比较组间差异。分类变量采用例(百分数)表示,并使用Pearson’s卡方检验比较组间差异。未进行多重假设检验校正。我们以是否确诊肺癌(含/不含疑似病例)作为因变量,调查问卷纳入的危险因素作为自变量,对问卷危险因素进行单因素Logistic回归分析初步探究女性肺癌的高危因素。鉴于经最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)筛选危险因素后使用Logistic回归分析时,可能在患病率低时出现错误的系数估计,LASSO惩罚Logistic回归可以有效避免错误的系数估计以及多重共线性问题[44,45]。因此,本研究使用LASSO惩罚Logistic回归建立了肺癌风险(不包括间隔癌)的预测模型,探究与女性肺癌有关的高危因素,并以优势比(odds ratio, OR)及95%置信区间(confidence interval, CI)为效应评估指标。LASSO是一种缩小所有回归系数的惩罚方法,将许多不相关的特征系数设置为零,以避免过拟合并保留有价值的变量。我们在预测模型中纳入了由自我报告问卷确定的变量。为了确保模型的稳健性,我们将70%的参与者随机分配到训练集,其余30%分配到内部验证集。我们在训练集上使用最小标准进行10次交叉验证,以确定惩罚参数λ的最优值。我们将训练过程中得到的惩罚Logistic模型应用于验证样本,以计算肺癌的预测概率。模型判别通过曲线下面积(area under the curve, AUC)进行评价。最终模型包括预测变量,可以表示为具有以下结构的线性函数:线性预测器=截距+系数1*变量1+系数2*变量2+系数3*变量3+…+系数x*变量x。为了确保准确性,我们排除了所有缺失值超过20%的变量。多重插补法仅用于缺失数据小于20%的变量。本研究采用SPSS 26.0统计学软件及R(版本:4.1.2)运行R包“glmnet”(版本:4.3.1)进行数据分析,并用R包“ggplot2”(版本:3.4.0)进行绘图。所有统计学检验均为双侧检验,P< 005为差异具有统计学意义。
2 结果
2.1 参与筛查人员基线信息和筛查结果
最终完成肺癌筛查的女性居民共计6256人。平均年龄(57.5±8.8)岁,其中40-49岁、50-59岁和≥60岁年龄组女性的人数(占比)分别为1362人(21.77%)、2037人(32.56%)和2857人(45.67%)。共发现阳性结节1228例,阳性检出率为19.63%,其中确诊肺癌117例(不含间隔癌)(9.53%)。在确诊肺癌病例中,Tis期6例(5.13%),I期103例(88.03%)[含T1a(mi)期34例,占I期比例33.01%],II期1例(0.85%),III期3例(2.56%),IV期4例(3.42%)。总体而言,肺癌的确诊率随着年龄的增长呈逐步增加趋势,40-49岁为0.81%,50-59岁为1.52%,≥60岁为2.62%。其中,除了IB期在40-49岁年龄段确诊率最高(0.15%),Tis、T1a(mi)、IA、IIB、IIIB和IV期均在≥60岁年龄段的确诊率最高,分别为0.18%、0.63%、1.47%、0.04%、0.04%和0.14%。各年龄段T1a(mi)和IA期肺癌检出率均远高于其他分期(除40-49岁年龄段IA与IB期相同)(见表1和图2)。在确诊的117例肺癌中,除了4例(3.42%)病理类型未知,其余113例(96.58%)均为肺腺癌。其中早期和局部晚期肺癌(Tis-IIIA期,共112例)均以手术治疗切除结节病灶,并基于术后病理结果根据主诊医生建议完成后续辅助治疗。病理IIIB期的1例患者采用新辅助免疫治疗联合手术治疗,术后予免疫辅助治疗维持。病理IV期的4例患者为全身抗肿瘤治疗。值得注意的是,发现间隔癌2例,I期1例,IV期1例。
2.2 单因素Logistic回归分析
表2为筛查人群的详细人 统计学特征。与未确诊肺癌组[(57.44±8.77)岁]相比,确诊组平均年龄更高[(60.82±7.69)岁](P< 0001)。值得注意的是,确诊组从不吸烟的比例(98.29%)比未确诊组(97.72%)高(P> 0.999),而确诊组有二手烟暴露的比例(70.94%)比未确诊组(69.54%)高(P> 0.999),但均未发现统计学差异(分类变量各分类P值表中未显示)。以肺癌诊断(不含/含疑似病例)为因变量,调查问卷因素如年龄、恶性肿瘤家族史、个人恶性肿瘤史、疾病史、吸烟情况、饮食习惯、职业暴露、室内环境暴露等109个因素作为自变量进行单因素Logistic回归分析。分析不含疑似病例的结果(表3)显示肺癌的危险因素(P< 005)有个人恶性肿瘤史(OR=5.24, 95%CI: 3.11-8.82, P< 0001)、年龄≥60岁(OR=3.31, 95%CI: 1.75-6.26, P< 0001)、有毒物质职业暴露[有毒物质定义为砷(吡酸)、石棉、油漆、镍/镉/铬(冶炼或电镀)、橡胶、煤尘、粉尘 、农药、放射线、铍、铀、氡等](OR=1.55, 95%CI: 1.04-2.29, P=0.035)以及小时候家中做饭以煤为主要燃料(OR=1.93, 95%CI: 1.13-3.28, P=0.014);而肺癌的保护因素(P< 005)有因室内外温度变化过敏(定义为由突然的室内外温度变化引起的鼻、咽部症状,如鼻塞、鼻发痒、咽干等[46])(OR=0.45, 95%CI: 0.23-0.86, P=0.016)。表3仅展示部分结果,完整结果见表S1(http://www.lungca.org/files/2024s23s1.pdf),含疑似病例的结果见表S2(http://www.lungca.org/files/2024s23s2.pdf)。
2.3 LASSO惩罚Logistic回归分析
LASSO惩罚Logistic回归分析结果显示:年龄(OR=1.07, 95%CI: 1.06-1.07)、个人恶性肿瘤史(OR=3.29, 95%CI: 3.22-3.37)、纺织职业(OR=1.10, 95%CI: 1.08-1.13)、小时候使用煤为燃料(OR=1.14, 95%CI: 1.13-1.16)以及食物过敏史(OR=1.10, 95%CI: 1.07-1.13)是该地区女性肺癌的高危因素。与较低龄女性相比,该地区高龄女性的肺癌发病风险更高;有个人恶性肿瘤史、纺织职业、小时候使用煤为燃料及有食物过敏史与更高的肺癌发病风险有关(见图3和表4)。训练集AUC=0.66(95%CI: 0.61-0.72),验证集AUC=0.62(95%CI: 0.50-0.73),模型如下:肺癌风险=-5.398+0.063*年龄+1.192*个人肿瘤史+0.098*纺织+0.133*小时候家中做饭使用煤为主要燃料+0.092*食物过敏史。
含疑似病例结果见表S3(http://www.lungca.org/files/2024s23s3.pdf),被选择的因素有年龄(OR=1.03, 95%CI: 1.02-1.03)、个人肿瘤史(OR=2.11, 95%CI: 2.05-2.16)以及纺织职业(OR=1.69, 95%CI: 1.64-1.73)。
图 1 参与LDCT筛查流程图 (不包括间隔癌) Fig 1 Flow chart of LDCT screening (exclued interval cancer). Positive#: pure ground-glass nodules with the longest diameters of ≥8 mm or part-solid and solid noncalcified nodules with the longest diameters of ≥5 mm or masses ≥30 mm identified on LDCT images. LDCT: low-dose computed tomography.
图 2 2015-2021年各年龄段女性各期肺癌检出率 Fig 2 Detection rate of lung cancer in various stages of women in different age groups from 2015 to 2021
图 3 LASSO路径图. 根据正则化参数lambda (x轴, Log Lambda) 的值, 显示出了AUC (A) 和所包含变量的系数 (B) . 虚线标记了最终选择的lambda值0.00469, AUC为0.62. Fig 3 LASSO Path. Based on the value of the regularization parameter lambda (x-axis, Log Lambda), the AUC (A) and the coefficients of the included variables (B) are shown. The dashed line marks the final selection lambda, the value of which is 0.00469, and AUC is 0.62. AUC: area under curve.
3 讨论
本研究中,在没有烟草等致癌物作为限制的入选标准情况下,该女性群体的肺癌检出率为1.87%(117例),其中大部分检出病例为早期肺癌。此外,我们在该队列中探索肺癌的高危因素,发现年龄、个人恶性肿瘤史、纺织职业、小时候使用煤为燃料和食物过敏史是该地区女性人群肺癌的高危因素,有助于识别该地区的肺癌高危人群。
在本研究的LDCT基线筛查结果中,女性阳性结节检出率为19.63%,高于安徽合肥(4.52%)[47]、四川成都(10.00%)[48]、河北(11.14%)[49]、辽宁(7.72%)[50]、重庆(11.36%)[51]、云南昆明(6.00%)[52]、河南(5.02%)[53]等地,也高于全国城市地区平均水平(11.36%)[54]。根据本项目纳入与排除标准,我们考虑该差异与人群地理差异、地区经济及医疗机构的诊疗水平[51,54]以及对阳性结节定义的不同标准有关。最终117例确诊为肺癌,其中肺腺癌有113例,占比高达96.58%。与上海[55,56]、云南个旧[57]肺癌早筛项目的病理诊断结果一致,腺癌均远多于鳞癌、小细胞癌和大细胞癌。各年龄段的T1a(mi)期及IA期检出率均最高,合计占肺癌确诊总数的82.91%,此期的高检出率体现了肺癌早筛早诊早治的意义。
我们创新性地采用单因素与LASSO惩罚Logistic回归分析探究女性群体的肺癌高危因素,并建立风险预测模型。结果表明该地区女性肺癌的高危因素包括年龄、个人恶性肿瘤史、纺织职业、小时候家中使用煤为燃料以及食物过敏。然而预测模型训练集AUC仅为0.66,验证集AUC仅为0.62,我们推测由于肺癌的发病较复杂,受遗传、环境等多因素影响,选择的模型可能过于简单而不能充分描述具有复杂结构的数据。其次,训练集的样本量为4379例,较小的样本量降低了模型的泛化能力。同时,在本研究中,只有病理活检确诊的患者才被纳入患癌组,40例高度怀疑肺癌但拒绝进行病理活检的患者被纳入无肺癌组,并且在高度怀疑肺癌而接受病理活检的人群中,7例确诊为转移癌的患者也被纳入无肺癌组,可能进一步降低了模型的AUC。另外,在6256名入组的人群中,仅117例被病理确诊为肺癌,不平衡的类分布可能也导致模型偏向多数类,从而影响AUC的计算结果。尽管有研究[58,59]表明由于累积纤维暴露及国际公认致癌物石棉暴露,纺织工人的肺癌风险显著增高,但也有不少队列研究[60-62]提示纺织工人的肺癌风险显著降低,结论与本研究相反,可能与纺织粉尘导致的大量的内毒素暴露并引起的先天免疫激活及适应性免疫相关[63-66]。因此,纺织职业与肺癌的关联有待进一步探索。烹饪产生的吸入性煤烟和煤烟尘中含有大量多环芳烃,如苯并氟蒽、苯并芘等,因其具有高致突变性而被国际癌症研究机构(International Agency for Research on Cancer, IARC)列为致癌物[67,68]。Hosgood、Zhao等[69,70]的研究也发现了室内煤烟及煤烟尘暴露可导致肺癌发病风险增高。食物过敏对肺癌发病的影响很少被报道,我们推测它对肺癌的影响与慢性免疫刺激增加癌症风险有关[71],并且可能与过敏反应发生的次数与症状的严重程度有关,具体机制还有待进一步研究。由于小时候家中使用煤为燃料及食物过敏在含疑似病例的模型中被排除,因此应慎重考虑其结果的稳健性。
本研究中我们未观察到吸烟及二手烟与肺癌发病风险的关联,这与辽宁的大规模肺癌筛查结果[50]是一致的。在中国,表皮生长因子受体(epidermal growth factor receptor, EGFR)突变为NSCLC患者最常见的遗传改变,占比高达39.0%,而EGFR突变通常发生在非/轻度吸烟的NSCLC肺癌患者,因此在我国的肺癌筛查中鲜有发现吸烟与肺癌发病显著相关[72]。另外,近年来越来越多的证据表明烟草烟雾暴露在我国女性群体中相对少见,而在中老年女性群体中大量生物燃料以及厨房油烟暴露与较高的肺癌发病风险相关[73,74]。但在本研究中我们未观察到厨房油烟暴露与较高的肺癌发病风险相关,一方面可能是由于抽油烟机的普及以及居民健康意识的提升使得住房通风条件改善,导致重度油烟暴露样本量较少(34例,0.54%),另一方面可能是油烟暴露对肺癌的发病具有时间滞后效应[75],而本研究中采用的LASSO惩罚Logistic回归模型无法观察到时间的影响。
本研究也有以下局限性。首先,本研究中心单一,将本文研究结果推广到中国其他人群时应谨慎;其次,这是一项单臂队列研究,本研究显示的高危因素还需在多中心中验证;第三,与任何临床研究一样,在本次筛查中不能排除选择偏倚,自愿接受筛查的个体可能在行为和其他影响肺癌发展的因素上存在差异;此外,筛查的样本量和危险因素的暴露人数有限,有可能导致未能发现更多女性肺癌的高危因素。同时,当前国内的肺癌筛查项目还面临着可能造成受检者焦虑、恐慌以及过度医疗的问题,对于检出率达19.63%的阳性结节,根据Fleischner协会肺结节管理建议和Lung-RADs肺结节管理指南[37,76],我们未对所有检出的肺结节行有创病理检查以确定肺癌检出率,这可能低估了LDCT的筛查能力,与此同时可避免过度诊疗[77]。另外,我们还将通过后续高危因素的探索完善针对不同人群的肺癌风险预测模型,以期在未来更为精准地识别高危人群。
综上,广州市越秀区采用LDCT筛查女性可检出大量早期肺癌,有助于早诊早治。本研究结果提示年龄、个人恶性肿瘤史、纺织职业、小时候使用煤为燃料和食物过敏史是该地区女性人群肺癌的高危因素,需给予重点关注,以提高该人群对肺癌早筛的重视,并且加强对纺织行业工人职业病的防护。本研究结果为完善肺癌风险预测模型与早诊早治工作提供了科学依据。
Competing interests
The authors declare that they have no competing interests.
Author contributions
Lu XZ, Liang WH, He JX and Zhong NS conceived and designed the study. Qiu QX, Yang CY, Li CC, Li JF and Xiong S analyzed the data. Cheng B, Zhou CJ, and Du XQ contributed analysis tools. Lu XZ, Zhang Y, Liang WH, He JX and Zhong NS provided critical inputs on design, analysis, and interpretation of the study. All the authors had access to the data. All authors read and approved the final manuscript as submitted.
Ferlay J, Ervik M, Lam F, et al. Global Cancer Observatory: Cancer Today (version 1.1). Lyon, France: International Agency for Research on Cancer. https://gco.iarc.who.int/today. Accessed March 19, 2024.
Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl), 2021, 134(7): 783-791. doi: 10.1097/cm9.0000000000001474
Li FM, Xia Y, Wei Y, et al. Analysis of direct non-medical cost of newly treated advanced non-small cell lung cancer patients. Weisheng Jingji Yanjiu, 2022, 39(10): 58-61. [李福明, 夏宇, 魏艳, 等. 晚期非小细胞肺癌初治患者的直接非医疗成本分析. 卫生经济研究, 2022, 39(10): 58-61.] doi: 10.14055/j.cnki.33-1056/f.2022.10.008
Liu HZ, Lin GZ ed. Guangzhou cancer registration annual report 2017-2018. 1st ed. Guangzhou: Guangdong Yangcheng Evening News Press. [刘华章, 林国桢 主编. 广州市肿瘤登记年报2017-2018. 第1版. 广州: 羊城晚报出版社.]
He J ed. 2018 China cancer registry annual report. 1st ed. Beijing: People's Medical Publishing House. [赫捷 主编. 2018中国肿瘤登记年报. 第1版. 北京: 人民卫生出版社.]
Jiang F, Fu ZT, Lu ZL, et al. Cancer survival during 2012-2018 in cancer registries of Shandong Province. Zhonghua Yufang Yixue Zazhi, 2022, 56(6): 806-814. [姜帆, 付振涛, 鹿子龙, 等. 2012-2018年山东省肿瘤登记地区癌症新发病例的生存分析. 中华预防医学杂志, 2022, 56(6): 806-814.] doi: 10.3760/cma.j.cn112150-20210910-00882
Yotsukura M, Asamura H, Motoi N, et al. Long-term prognosis of patients with resected adenocarcinoma in situ and minimally invasive adenocarcinoma of the lung. J Thorac Oncol, 2021, 16(8): 1312-1320. doi: 10.1016/j.jtho.2021.04.007
Lung Cancer Screening. https://www.nccn.org/professionals/physician_gls/pdf/lung_screening.pdf. Accessed January 07, 2024.
Detterbeck FC, Mazzone PJ, Naidich DP, et al. Screening for lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013, 143(5 Suppl): e78S-e92S. doi: 10.1378/chest.12-2350
Jaklitsch MT, Jacobson FL, Austin JH, et al. The American Association for Thoracic Surgery guidelines for lung cancer screening using low-dose computed tomography scans for lung cancer survivors and other high-risk groups. J Thorac Cardiovasc Surg, 2012, 144(1): 33-38. doi: 1016/j.jtcvs.2012.05.060
Field JK, Smith RA, Aberle DR, et al. International Association for the Study of Lung Cancer Computed Tomography Screening Workshop 2011 report. J Thorac Oncol, 2012, 7(1): 10-19. doi: 10.1097/JTO.0b013e31823c58ab
Wender R, Fontham ET, Barrera E Jr., et al. American Cancer Society lung cancer screening guidelines. CA Cancer J Clin, 2013, 63(2): 107-117. doi: 10.3322/caac.21172
Smith RA, Manassaram-Baptiste D, Brooks D, et al. Cancer screening in the United States, 2015: a review of current American cancer society guidelines and current issues in cancer screening. CA Cancer J Clin, 2015, 65(1): 30-54. doi: 10.3322/caac.21261
Moyer VA. Screening for lung cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med, 2014, 160(5): 330-338. doi: 10.7326/m13-2771
Jacobson FL, Austin JH, Field JK, et al. Development of The American Association for Thoracic Surgery guidelines for low-dose computed tomography scans to screen for lung cancer in North America: recommendations of The American Association for Thoracic Surgery Task Force for Lung Cancer Screening and Surveillance. J Thorac Cardiovasc Surg, 2012, 144(1): 25-32. doi: 10.1016/j.jtcvs.2012.05.059
Wood DE, Kazerooni E, Baum SL, et al. Lung cancer screening, version 1. 2015: featured updates to the NCCN guidelines. J Natl Compr Canc Netw, 2015, 13(1): 23-34; quiz 34. doi: 10.6004/jnccn.2015.0006
He J, Li N, Chen WQ, et al. China guideline for the screening and early detection of lung cancer (2021, Beijing). Zhonghua Zhongliu Zazhi, 2021, 43(3): 243-268. [赫捷, 李霓, 陈万青, 等. 中国肺癌筛查与早诊早治指南(2021, 北京). 中华肿瘤杂志, 2021, 43(3): 243-268.] doi: 10.3760/cma.j.cn112152-20210119-00060
Lancaster HL, Heuvelmans MA, Oudkerk M. Low-dose computed tomography lung cancer screening: Clinical evidence and implementation research. J Intern Med, 2022, 292(1): 68-80. doi: 10.1111/joim.13480
Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 2011, 365(5): 395-409. doi: 10.1056/NEJMoa1102873
Wang XM. Application of low-dose CT in early screening of lung cancer and multiple Logistic analysis of risk factors. Jilin Yixue, 2020, 41(10): 2336-2337. [王小梅. 低剂量CT在体检人群早期肺癌筛查中的应用及危险多因素Logistic分析. 吉林医学, 2020, 41(10): 2336-2337.] doi: 10.3969/j.issn.1004-0412.2020.10.011
Zhang XZ, Zhang ZR, Cheng K, et al. Lung cancer screening study in Macao smoking individuals. Zhongguo Feiai Zazhi, 2021, 24(8): 548-556. [张晓战, 张振荣, 程鲲, 等. 在中国澳门吸烟人群中的肺癌筛查研究. 中国肺癌杂志, 2021, 24(8): 548-556.] doi: 10.3779/j.issn.1009-3419.2021.101.25
De Koning HJ, Van Der Aalst CM, De Jong PA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med, 2020, 382(6): 503-513. doi: 10.1056/NEJMoa1911793
Wood DE, Kazerooni EA, Aberle D, et al. NCCN Guidelines? insights: lung cancer screening, version 1. 2022. J Natl Compr Canc Netw, 2022, 20(7): 754-764. doi: 10.6004/jnccn.2022.0036
Smith RA, Andrews KS, Brooks D, et al. Cancer screening in the United States, 2019: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin, 2019, 69(3): 184-210. doi: 10.3322/caac.21557
Krist AH, Davidson KW, Mangione CM, et al. Screening for lung cancer: US preventive services task force recommendation statement. JAMA, 2021, 325(10): 962-970. doi: 10.1001/jama.2021.1117
Jemal A, Miller KD, Ma J, et al. Higher lung cancer incidence in young women than young men in the United States. N Engl J Med, 2018, 378(21): 1999-2009. doi: 10.1056/NEJMoa1715907
Wang F, Tan F, Shen S, et al. Risk-stratified approach for never- and ever-smokers in lung cancer screening: a prospective cohort study in China. Am J Respir Crit Care Med, 2023, 207(1): 77-88. doi: 10.1164/rccm.202204-0727OC
De Groot PM, Wu CC, Carter BW, et al. The epidemiology of lung cancer. Transl Lung Cancer Res, 2018, 7(3): 220-233. doi: 10.21037/tlcr.2018.05.06
Zhou F, Zhou C. Lung cancer in never smokers-the East Asian experience. Transl Lung Cancer Res, 2018, 7(4): 450-463. doi: 10.21037/tlcr.2018.05.14
Mu L, Liu L, Niu R, et al. Indoor air pollution and risk of lung cancer among Chinese female non-smokers. Cancer Causes Control, 2013, 24(3): 439-450. doi: 10.1007/s10552-012-0130-8
Liang X, Liu MW, Zhang L, et al. Global trends of incidence of lung cancer. Zhongguo Zhongliu, 2022, 31(9): 683-692. [梁锌, 刘梦雯, 张丽, 等. 全球部分地区肺癌发病趋势及年龄变化情况分析. 中国肿瘤, 2022, 31(9): 683-692.] doi: 10.11735/j.issn.1004-0242.2022.09.A002
Li C, Liang H, Zhong N, et al. Optimal starting age for lung cancer screening with low-dose computed tomography: a population level analysis. J Thorac Oncol, 2019, 14(4): e82-e84. doi: 10.1016/j.jtho.2018.12.008
Tang W, Wu HY, Wang JW, et al. Results of low-dose computed tomography (LDCT) screening for early lung cancer: prevalence in 4690 asymptomatic participants. Zhonghua Zhongliu Zazhi, 2014, 36(7): 549-554. [唐威, 吴黄遥, 王建卫, 等. 4690例无症状健康体检者低剂量CT早期肺癌筛查研究. 中华肿瘤杂志, 2014, 36(7): 549-554.] doi: 10.3760/cma.j.issn.0253-3766.2014.07.016
Chinese Medical Association of Respiratory Disease Branch Lung Cancer Study Group, Chinese Alliance Against Lung Cancer Expert Group. Chinese expert consensus on the diagnosis and treatment of pulmonary nodules (2018 edition). Zhonghua Jiehe He Huxi Zazhi, 2018, 41(10): 763-771. [中华医学会呼吸病学分会肺癌学组, 中国肺癌防治联盟专家组. 肺结节诊治中国专家共识(2018年版). 中华结核和呼吸杂志, 2018, 41(10): 763-771.] doi: 10.3760/cma.j.issn.1001-0939.2018.10.004
Horeweg N, Scholten ET, De Jong PA, et al. Detection of lung cancer through low-dose CT screening (NELSON): a prespecified analysis of screening test performance and interval cancers. Lancet Oncol, 2014, 15(12): 1342-1350. doi: 10.1016/s1470-2045(14)70387-0
Zhou QH, Fan YG, Wang Y, et al. China national lung cancer screening guideline with low-dose computed tomography (2018 version). Zhongguo Feiai Zazhi, 2018, 21(2): 67-75. [周清华, 范亚光, 王颖, 等. 中国肺癌低剂量螺旋CT筛查指南(2018年版). 中国肺癌杂志, 2018, 21(2): 67-75.] doi: 10.3779/j.issn.1009-3419.2018.02.01
Macmahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: From the Fleischner Society 2017. Radiology, 2017, 284(1): 228-243. doi: 10.1148/radiol.2017161659
Goldstraw P, Chansky K, Crowley J, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol, 2016, 11(1): 39-51. doi: 10.1016/j.jtho.2015.09.009
Oncology Society of Chinese Medical Association, Chinese Medical Association Publishing House. Chinese Medical Association guideline for clinical diagnosis and treatment of lung cancer (2023 edition). Zhonghua Zhongliu Zazhi, 2023, 45(7): 539-574. [中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2023版). 中华肿瘤杂志, 2023, 45(7): 539-574.] doi: 10.3760/cma.j.cn112152-20230510-00200
The NCCN clinical practice guidlines in oncology for non-small cell lung cancer (version 1. 2024). https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. Accessed January 12, 2024.
Wanders JOP, Holland K, Karssemeijer N, et al. The effect of volumetric breast density on the risk of screen-detected and interval breast cancers: a cohort study. Breast Cancer Res, 2017, 19(1): 67. doi: 10.1186/s13058-017-0859-9
Azur MJ, Stuart EA, Frangakis C, et al. Multiple imputation by chained equations: what is it and how does it work?. Int J Methods Psychiatr Res, 2011, 20(1): 40-49. doi: 10.1002/mpr.329
Blazek K, Van Zwieten A, Saglimbene V, et al. A practical guide to multiple imputation of missing data in nephrology. Kidney Int, 2021, 99(1): 68-74. doi: 10.1016/j.kint.2020.07.035
Robert T. Regression shrinkage and selection via the lasso: a retrospective. J R Stat Soc Series B Stat Methodol , 2011, 73(3): 273-282. doi: 10.1111/j.1467-9868.2011.00771.x
Xi LJ, Guo ZY, Yang XK, et al. Application of LASSO and its extended method in variable selection of regression analysis. Zhonghua Yufang Yixue Zazhi, 2023, 57(1): 107-111. [奚丽婧, 郭昭艳, 杨雪珂, 等. LASSO及其拓展方法在回归分析变量筛选中的应用. 中华预防医学杂志, 2023, 57(1): 107-111.] doi: 10.3760/cma.j.cn112150-20220117-00063
Graudenz GS, Oliveira CH, Tribess A, et al. Sudden temperature changes and respiratory symptoms--an experimental approach. Am J Rhinol, 2007, 21(3): 383-387. doi: 10.2500/ajr.2007.21.3023
Tian T, Wei DH, Xu YH, et al. Analysis of lung cancer screening for urban residents in Hefei from 2015 to 2019. Zhonghua Zhongliu Fangzhi Zazhi, 2022, 29(23): 1653-1658. [田田, 魏东华, 徐叶红, 等. 2015-2019年合肥市城市居民肺癌筛查结果分析. 中华肿瘤防治杂志, 2022, 29(23): 1653-1658.] doi: 10.16073/j.cnki.cjcpt.2022.23.03
Qiao L, Liu MY, Zhou P, et al. Analysis of lung cancer screening results and incidence influencing factors of high-risk cohort population in Longquanyi District of Chengdu city, Sichuan province from 2014 to 2018. Zhongguo Zhongliu, 2022, 31(12): 975-982. [乔良, 刘明艳, 周鹏, 等. 2014-2018年成都市龙泉驿区肺癌高危人群队列筛查结果及发病影响因素分析. 中国肿瘤, 2022, 31(12): 975-982.] doi: 10.11735/j.issn.1004-0242.2022.12.A006
Wang JX, Liang D, Jin J, et al. Screening of lung cancer and pulmonary nodule with low-dose spiral computed tomography and associates of the diseases among physical examinees in Hebei province. Zhongguo Gonggong Weisheng, 2020, 36(1): 20-24. [王静西, 梁迪, 靳晶, 等. 河北省体检人群肺癌和肺结节阳性低剂量螺旋CT筛查. 中国公共卫生, 2020, 36(1): 20-24.] doi: 10.11847/zgggws1125160
Yu ZF, Wang XY, He R, et al. Results of lung cancer screening in urban residentsin Liaoning area, 2012-2017. Xiandai Yufang Yixue, 2020, 47(13): 2442-2445, 2470. [于志福, 王晓煜, 何嵘, 等. 2012-2017年辽宁地区城市居民肺癌筛查结果分析. 现代预防医学, 2020, 47(13): 2442-2445, 2470.]
Du J, He M, Qiu H, et al. Results of lung cancer screening among urban residents in Chongqing, 2012-2017. Zhongguo Zhongliu, 2018, 27(5): 328-332. [杜佳, 何美, 邱惠, 等. 2012-2017年重庆城市居民肺癌筛查结果分析. 中国肿瘤, 2018, 27(5): 328-332.] doi: 10.11735/j.issn.1004-0242.2018.05.A002
Lin YP, Ma J, Feng J, et al. Results of lung cancer screening among urban residents in Kunming. Zhongguo Feiai Zazhi, 2019, 22(7): 413-418. [林艳苹, 马洁, 封俊, 等. 云南省昆明市城市居民肺癌筛查结果分析. 中国肺癌杂志, 2019, 22(7): 413-418.] doi: 10.3779/j.issn.1009-3419.2019.07.02
Guo LW, Liu SZ, Zhang SK, et al. Analysis of the efficacy of lung cancer screening in urban areas of Henan province by low-dose computed tomography from 2013 to 2017. Zhonghua Zhongliu Zazhi, 2020, 42(2): 155-159. [郭兰伟, 刘曙正, 张韶凯, 等. 2013-2017年河南省城市地区低剂量螺旋CT肺癌筛查效果分析. 中华肿瘤杂志, 2020, 42(2): 155-159.] doi: 10.3760/cma.j.issn.0253-3766.2020.02.013
Chen WQ, Li N, Cao MM, et al. Preliminary analysis of cancer screening program in urban China from 2013 to 2017. Zhongguo Zhongliu, 2020, 29(1): 1-6. [陈万青, 李霓, 曹毛毛, 等. 2013-2017年中国城市癌症早诊早治项目基线结果分析. 中国肿瘤, 2020, 29(1): 1-6.] doi: 10.11735/j.issn.1004-0242.2020.01.A001
Yang W, Qian F, Teng J, et al. Community-based lung cancer screening with low-dose CT in China: Results of the baseline screening. Lung Cancer, 2018, 117: 20-26. doi: 10.1016/j.lungcan.2018.01.003
Fan L, Wang Y, Zhou Y, et al. Lung cancer screening with low-dose CT: Baseline screening results in Shanghai. Acad Radiol, 2019, 26(10): 1283-1291. doi: 10.1016/j.acra.2018.12.002
Wei MN, Su Z, Wang JN, et al. Performance of lung cancer screening with low-dose CT in Gejiu, Yunnan: A population-based, screening cohort study. Thorac Cancer, 2020, 11(5): 1224-1232. doi: 10.1111/1759-7714.13379
Elliott L, Loomis D, Dement J, et al. Lung cancer mortality in North Carolina and South Carolina chrysotile asbestos textile workers. Occup Environ Med, 2012, 69(6): 385-390. doi: 10.1136/oemed-2011-100229
Wang X, Lin S, Yano E, et al. Exposure-specific lung cancer risks in Chinese chrysotile textile workers and mining workers. Lung Cancer, 2014, 85(2): 119-124. doi: 10.1016/j.lungcan.2014.04.011
Ben Khedher S, Neri M, Guida F, et al. Occupational exposure to textile dust and lung cancer risk: Results from the ICARE study. Am J Ind Med, 2018, 61(3): 216-228. doi: 10.1002/ajim.22799
Wernli KJ, Ray RM, Gao DL, et al. Cancer among women textile workers in Shanghai, China: overall incidence patterns, 1989-1998. Am J Ind Med, 2003, 44(6): 595-599. doi: 10.1002/ajim.10265
Kuzmickiene I, Stukonis M. Lung cancer risk among textile workers in Lithuania. J Occup Med Toxicol, 2007, 2: 14. doi: 10.1186/1745-6673-2-14
Liebers V, Raulf-Heimsoth M, Brüning T. Health effects due to endotoxin inhalation (review). Arch Toxicol, 2008, 82(4): 203-210. doi: 10.1007/s00204-008-0290-1
Liu AH. Endotoxin exposure in allergy and asthma: reconciling a paradox. J Allergy Clin Immunol, 2002, 109(3): 379-392. doi: 10.1067/mai.2002.122157
Lenters V, Basinas I, Beane-Freeman L, et al. Endotoxin exposure and lung cancer risk: a systematic review and meta-analysis of the published literature on agriculture and cotton textile workers. Cancer Causes Control, 2010, 21(4): 523-555. doi: 10.1007/s10552-009-9483-z
Lundin JI, Checkoway H. Endotoxin and cancer. Environ Health Perspect, 2009, 117(9): 1344-1350. doi: 10.1289/ehp.0800439
List of Classifications-Agents classified by the IARC Monographs, Volumes 1-134. https://monographs.iarc.who.int/list-of-classifications. Accessed January 15, 2024.
Tokiwa H, Sera N, Nakashima A, et al. Mutagenic and carcinogenic significance and the possible induction of lung cancer by nitro aromatic hydrocarbons in particulate pollutants. Environ Health Perspect, 1994, 102(Suppl 4): 107-110. doi: 10.1289/ehp.94102s4107
Hosgood HD 3rd, Wei H, Sapkota A, et al. Household coal use and lung cancer: systematic review and meta-analysis of case-control studies, with an emphasis on geographic variation. Int J Epidemiol, 2011, 40(3): 719-728. doi: 10.1093/ije/dyq259
Zhao Y, Wang S, Aunan K, et al. Air pollution and lung cancer risks in China--a meta-analysis. Sci Total Environ, 2006, 366(2-3): 500-513. doi: 10.1016/j.scitotenv.2005.10.010
Lindel?f B, Granath F, Tengvall-Linder M, et al. Allergy and cancer. Allergy, 2005, 60(9): 1116-1120. doi: 10.1111/j.1398-9995.2005.00808.x
Chen P, Liu Y, Wen Y, et al. Non-small cell lung cancer in China. Cancer Commun (Lond), 2022, 42(10): 937-970. doi: 10.1002/cac2.12359
Cheng ES, Egger S, Hughes S, et al. Systematic review and meta-analysis of residential radon and lung cancer in never-smokers. Eur Respir Rev, 2021, 30(159): 200230. doi: 10.1183/16000617.0230-2020
Kong H. The research of risk factors for early lung adenocarcinoma in non-smoking women and clinical effect analysis of different surgical methods. Yangzhou Daxue, 2023. [孔浩. 非吸烟女性早期肺腺癌的危险因素研究及不同手术方式治疗的临床效果分析. 扬州大学, 2023.] doi: 10.27441/d.cnki.gyzdu.2022.000936
Ni X, Xu N, Wang Q. Analysis on the incidence risk and their influence factors of female lung cancer in China based on Bayesian spatio-temporal model. Huanjing Weishengxue Zazhi, 2022, 12(6): 407-414. [倪雪, 许宁, 王强. 基于贝叶斯时空模型探究中国女性肺癌发病风险及其影响因素. 环境卫生学杂志, 2022, 12(6): 407-414.] doi: 10.13421/j.cnki.hjwsxzz.2022.06.003
Lung imaging reporting and data system (Lung-RADS). https://www.acr.org/-/media/ACR/Files/RADS/Lung-RADS/Lung-RADS-2022.pdf. Accessed January 15, 2024.
Adams SJ, Stone E, Baldwin DR, et al. Lung cancer screening. Lancet, 2023, 401(10374): 390-408. doi: 10.1016/s0140-6736(22)01694-4
1The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; 2Guangzhou Institute of Respiratory Health, Guangzhou 510120, China; 3Nanshan School, Guangzhou Medical University, Guangzhou 511436, China; 4Guangzhou Municipal Health Commission, Guangzhou 510080, China; 5Southern Medical University, Guangzhou 510515, China
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2024. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
背景与目的 肺癌高居中国恶性肿瘤发病率和死亡率之首。既往肺癌筛查试验大多为针对吸烟者等高危人群的选择性筛查,然而亚洲肺癌病例非吸烟女性占相当比例。本研究旨在评估广州市社区女性的肺癌患病率并探究肺癌高危因素。方法 采用胸部低剂量计算机断层扫描(low-dose computed tomography, LDCT)对广州市40-74岁女性居民行肺癌筛查,并根据2018版《中国肺癌低剂量螺旋CT筛查指南》对肺结节进行分类管理及计算阳性结节和肺癌检出率。筛查对象在行检查前均须完成“肺癌危险因素调研问卷”,后对问卷危险因素进行最小绝对收缩和选择算子惩罚Logistic回归分析。结果 分析共纳入6256名女性,发现阳性结节1228例(19.63%),确诊肺癌117例(1.87%),其中原位癌6例,I期103例(占肺癌比例88.03%)。根据问卷变量行最小绝对收缩和选择算子(Least absolute shrinkage and selection operator, LASSO)惩罚Logistic回归分析发现,年龄≥50岁(OR=1.07, 95%CI: 1.06-1.07)、个人恶性肿瘤史(OR=3.29, 95%CI: 3.22-3.37)、纺织职业(OR=1.10, 95%CI: 1.08-1.13)、小时候使用煤为燃料(OR=1.14, 95%CI: 1.13-1.16)以及食物过敏史(OR=1.10, 95%CI: 1.07-1.13)是该地区女性肺癌的高危因素。结论 胸部LDCT可以发现大量早期肺癌,可用于女性肺癌筛查。年龄≥50岁、个人恶性肿瘤史、纺织职业、小时候使用煤为燃料和食物过敏史是该地区女性人群肺癌的高危因素,需提高该群体对肺癌早筛的重视程度。
Background and objective Both of lung cancer incidence and mortality rank first among all cancers in China. Previous lung cancer screening trials were mostly selective screening for high-risk groups such as smokers. Non-smoking women accounted for a considerable proportion of lung cancer cases in Asia. This study aimed to evaluate the outcome of community-based mass screening in Guangzhou and identify the high-risk factors for lung cancer. Methods Residents aged 40-74 years in Guangzhou were screened with low-dose computed tomography (LDCT) for lung cancer and the pulmonary nodules were classified and managed according to China National Lung Cancer Screening Guideline with Low-dose Computed Tomography (2018 version). The detection rate of positive nodules was calculated. Before the LDCT examination, residents were required to complete a "lung cancer risk factors questionnaire". The risk factors of the questionnaire were analyzed by least absolute shrinkage and selection operator (LASSO) penalized Logistic regression analysis. Results A total of 6256 residents were included in this study. 1228 positive nodules (19.63%) and 117 lung cancers were confirmed, including 6 cases of Tis, 103 cases of stage I (accounting for 88.03% of lung cancer). The results of LASSO penalized Logistic regression analysis indicated that age ≥50 yr (OR=1.07, 95%CI: 1.06-1.07), history of cancer (OR=3.29, 95%CI: 3.22-3.37), textile industry (OR=1.10, 95%CI: 1.08-1.13), use coal for cooking in childhood (OR=1.14, 95%CI: 1.13-1.16) and food allergy (OR=1.10, 95%CI: 1.07-1.13) were risk factors of lung cancer for female in this district. Conclusion This study highlighted that numerous early stages of lung cancer cases were detected by LDCT, which could be applied to screening of lung cancer in women. Besides, age ≥50 yr, personal history of cancer, textile industry and use coal for cooking in childhood are risk factors for women in this district, which suggested that it’s high time to raise the awareness of early lung cancer screening in this group.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer