Abstract

Microexons exhibit striking evolutionary conservation and are subject to precise, switch-like regulation in neurons, orchestrated by the splicing factors Srrm3 and Srrm4. Disruption of these regulators in mice leads to severe neurological phenotypes, and their misregulation is linked to human disease. However, the specific microexons involved in these phenotypes and the effects of individual microexon deletions on neurodevelopment, physiology, and behavior remain poorly understood. To explore this, we generated zebrafish lines with deletions of 18 individual microexons, alongside srrm3 and srrm4 mutant lines, and conducted comprehensive phenotypic analyses. We discovered that while loss of srrm3, alone or together with srrm4, resulted in significant alterations in neuritogenesis, locomotion, and social behavior, individual microexon deletions typically produced mild or no noticeable effects. Nonetheless, we identified specific microexons associated with defects in neuritogenesis (evi5b, vav2, itsn1, src) and social behavior (vti1a, kif1b). Additionally, microexon deletions triggered coordinated transcriptomic changes in neural pathways, suggesting the presence of molecular compensatory mechanisms. Our findings suggest that the severe phenotypes caused by Srrm3/4 depletion arise from the combined effects of multiple subtle disruptions across various cellular pathways, which are individually well-tolerated.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

* Corrected Manuel Irimia's affiliation. He was incorrectly affiliated to CCU instead of UPF.

Details

Title
Phenotypic impact of individual conserved neuronal microexons and their master regulators in zebrafish
Author
Lopez-Blanch, Laura; Rodríguez-Marin, Cristina; Mantica, Federica; Iniguez, Luis P; Permanyer, Jon; Kita, Elizabeth M; Mackensen, Tahnee; Codina-Tobias, Mireia; Romero-Ferrero, Francisco; Fernandez-Albert, Jordi; Cuadrado, Myriam; Bustelo, Xose R; De Polavieja, Gonzalo; Irimia, Manuel
University/institution
Cold Spring Harbor Laboratory Press
Section
New Results
Publication year
2024
Publication date
Nov 13, 2024
Publisher
Cold Spring Harbor Laboratory Press
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
ProQuest document ID
3128012740
Copyright
© 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.