It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Piecewise linearization techniques require dividing the signal into multiple pieces each linearized individually. Machine learning (ML) is one of the useful tools to perform the automatic division of these pieces. Complexity reduction in the classification of piecewise digital predistortion is possible through carefully constructing features from both the signal statistics and the power amplifier (PA) characteristics. Our paper introduces two low-complex classical ML-based methods that facilitate the classification of baseband input data into distinct segments. These methods effectively linearize PA behavior by employing tailored Volterra models corresponding to each segment. Moreover, we perform an in-depth analysis of the proposed schemes to further optimize their classification and regression complexities. The two proposed low-complexity approaches are validated by laboratory experiments and show up to 4 dB error vector magnitude (EVM) improvement over the conventional approach for a class A PA at 28 GHz. Similarly, the EVM improvement is up to 2 dB over the vector-switched general memory polynomial scheme. With only one indirect learning architecture iteration, the two proposed schemes obey the 5G new radio standard up to 6.5 dB and 7 dB output backoff, respectively.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Oulu, Centre for Wireless Communications (CWC), Oulu, Finland (GRID:grid.10858.34) (ISNI:0000 0001 0941 4873)
2 University of Oulu, Center for Machine Vision and Signal Analysis (CMVS), Oulu, Finland (GRID:grid.10858.34) (ISNI:0000 0001 0941 4873)
3 University of Oulu, Department of Mathematical Sciences (DMS), Oulu, Finland (GRID:grid.10858.34) (ISNI:0000 0001 0941 4873)