Full text

Turn on search term navigation

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Tamarix articulate from the Tamaricaece family is a halophytic plant. This plant is commonly called Athal or Tamarix in different Arabic and Asian countries. Due to the high load of polyphenolic phytochemicals, the plant has been used as a therapeutic option against several diseases for decades. The plant is an anti-inflammatory, anti-bacterial, anti-viral, anti-cancer, anti-oxidant, and anti-inflammatory. In this work, the 222 phytochemical compounds of T. articulate from our previous study are used in different bioinformatic and biophysics techniques to explore their biological potency against different anti-bacterial, anti-cancer and anti-viral targets. By doing so, it was found that Riddelline ranked as the best binding molecule of biological macromolecules selected herein in particular the bacterial targets. The binding energy value of the compound for the KdsA enzyme was -14.64 kcal/mol, KdsB (-13.09 kcal/mol), MurC (-13.67 kcal/mol), MurD (-13.54 kcal/mol), MurF (-14.20 kcal/mol), Polo-like kinase 1 (Plk1) (-12.34 kcal/mol), Bcl-2 protein (-13.39 kcal/mol), SARS-CoV-2 main protease enzyme (-12.67 kcal/mol), and Human T cell leukemia virus protease (-13.67 kcal/mol). The mean Rg value of KdsA-Riddelline complex and KdsA-FPE complex is 32.67 Å, and average RMSD of KdsA-Riddelline complex and KdsA-FPE complex is 2.31 Å, respectively. The binding energy complexes was found to be dominated by van der Waals (-71.98 kcal/mol for KdsA-Riddelline complex and -65.09 kcal/mol for KdsA-FPE complex). The lead compound was also unveiled to show favorable druglike properties and pharmacokinetics. Together, the data suggest the good anti-bacterial activities of the T. articulate phytochemicals and thus can be subjected to experimental in vitro and in vivo investigations.

Details

Title
Riddelline from Tamarix articulate as a potential anti-bacterial lead compound for novel antibiotics discovery: A comprehensive computational and toxicological studies
Author
Alnuqaydan, Abdullah M  VIAFID ORCID Logo 
First page
e0310319
Section
Research Article
Publication year
2024
Publication date
Nov 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3128583305
Copyright
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.