It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The mucociliary clearance (MC) system is a vital host defense against infection in the lung. MC system function is dependent on ciliary density, structure, and function and airway surface liquid (ASL) composition and hydration. Animal and human studies indicate that MC rate decreases with age which may contribute to the increased rates of pulmonary infection experienced by older people. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encodes an anion channel on epithelial surfaces that plays a key role in maintaining ASL hydration. Failure or dysfunction of CFTR could result in the dehydration of airway mucus, depressing MC. Here we use two available databases including bulk (GTEx) and single-cell (CELLxGENE) sequencing data from the lung to determine if CFTR expression decreases with age. Bulk expression data and single-cell expression data from goblet, club, and respiratory basal cells all demonstrated patterns of decreasing CFTR expression with age. Ciliated airway cells did not. Secretory cells (including club and goblet cells) and basal cells are the largest source of CFTR expression in the airway. This indicates that changes in CFTR expression and ASL dehydration may contribute to the decreasing MC associated with aging.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Pittsburgh, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Pittsburgh, USA (GRID:grid.21925.3d) (ISNI:0000 0004 1936 9000); University of Pittsburgh, Department of Bioengineering, Pittsburgh, USA (GRID:grid.21925.3d) (ISNI:0000 0004 1936 9000); University of Pittsburgh, Department of Chemical and Petroleum Engineering, Pittsburgh, USA (GRID:grid.21925.3d) (ISNI:0000 0004 1936 9000)
2 University of Pittsburgh, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Pittsburgh, USA (GRID:grid.21925.3d) (ISNI:0000 0004 1936 9000)
3 University of Pittsburgh, Department of Pediatrics, Pittsburgh, USA (GRID:grid.21925.3d) (ISNI:0000 0004 1936 9000)