It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Understanding species richness and diversity patterns and their governing factors in less-to-unexplored regions across Himalaya provide invaluable insights into exploring drivers which shape as well as influence plant community structures. The present investigation explores plant species richness and diversity patterns across different growth forms and its association with environmental parameters along altitudinal gradient (3200 m-4800 m) in alpine regions of west Himalaya, India. A total of 265 plant taxa were documented from study area with higher proportion of herbs (212), followed by shrubs (44) and trees (9). Species richness, diversity, and density patterns were estimated for each growth form along altitude gradients using polynomial regression and an apparent monotonically decreasing trend (p < 0.05) was seen across transects, with highest values for herbs. Beta diversity, estimated for each transect, was low in Darma for herbs exhibiting high species packaging and homogenous composition, and high in Mana showing more scope for occurrence of rare/occasional herbs. Four major distinct altitudinal zones were identified for Uttarakhand alpines using cluster dendrogram, i.e., 3200 to 3500 m, 3600 to 3900 m, 4000 to 4500 m and 4600 to 4800 m with respect to their vegetation composition. NMDS of combined dataset along altitude gradient across transects also exhibited proximity among lower altitudesof transects with similar species composition (like Anaphalis, Danthonia, Geranium, Pedicularis, Potentilla), while high-altitude plots were scattered towards both ends of axesinhabiting specialized plant species (like Gentiana, Nardostachys, Saussurea, Sedum, Swertia). The relationship between vegetation variables (richness, diversity and density) and climate variables was modelled using Pearson’s correlation (P < 0.001) and temperature, precipitation, and solar radiation exhibited positive correlation, while windspeed showed negative correlation. Relative effect of climatic parameters on species composition, analysed by CCA, showed strongest influence of precipitation in vegetation zones with high axes correlation, followed by temperature, isothermality and wind speed, while influence solar radiation was lowest. Thus, under the current climate change scenario, any change in these factors may alter the composition of these high-altitude area and threaten the unique flora as well as the fauna dependent on it. Hence, any effort made towards conservation would eventually benefit a significant proportion of Himalayan biodiversity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details










1 Garhwal Regional Centre, G.B. Pant National Institute of Himalayan Environment, Srinagar, India
2 Centre for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Almora, India
3 Ladakh Regional Centre, G.B. Pant National Institute of Himalayan Environment, Leh, India
4 Centre for Land & Water Resource Management, G. B. Pant National Institute of Himalayan Environment, Almora, India