Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Featured Application

Potential applications of the work related to advanced hands-free control systems based on the interaction of BCI and VR.

Abstract

This article examines state-of-the-art research into the impact of virtual reality (VR) on brain–computer interface (BCI) performance: how the use of virtual reality can affect brain activity and neural plasticity in ways that can improve the performance of brain–computer interfaces in IoT control, e.g., for smart home purposes. Integrating BCI with VR improves the performance of brain–computer interfaces in IoT control by providing immersive, adaptive training environments that increase signal accuracy and user control. VR offers real-time feedback and simulations that help users refine their interactions with smart home systems, making the interface more intuitive and responsive. This combination ultimately leads to greater independence, efficiency, and ease of use, especially for users with mobility issues, in managing IoT-connected devices. The integration of BCI and VR shows great potential for transformative applications ranging from neurorehabilitation and human–computer interaction to cognitive assessment and personalized therapeutic interventions for a variety of neurological and cognitive disorders. The literature review highlights the significant advances and multifaceted challenges in this rapidly evolving field. Particularly noteworthy is the emphasis on the importance of adaptive signal processing techniques, which are key to enhancing the overall control and immersion experienced by individuals in virtual environments. The value of multimodal integration, in which BCI technology is combined with complementary biosensors such as gaze tracking and motion capture, is also highlighted. The incorporation of advanced artificial intelligence (AI) techniques will revolutionize the way we approach the diagnosis and treatment of neurodegenerative conditions.

Details

Title
Impact of Virtual Reality on Brain–Computer Interface Performance in IoT Control—Review of Current State of Knowledge
Author
Piszcz, Adrianna  VIAFID ORCID Logo  ; Rojek, Izabela  VIAFID ORCID Logo  ; Mikołajewski, Dariusz  VIAFID ORCID Logo 
First page
10541
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3132844042
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.