Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study explores the integration of photovoltaic (PV) shading devices and vertical farming (VF) in school buildings to optimize indoor daylight, thermal comfort, and energy performance across three different climate regions in China: Beijing, Shanghai, and Shenzhen. With rapid urbanization and increasing energy consumption in educational buildings, this research investigates the impact of innovative facade design on both energy efficiency and occupant comfort. Through parametric simulations and multi-objective optimization, various PV and VF facade prototypes were evaluated to determine the best configurations for reducing energy consumption while enhancing thermal and visual comfort. This study optimized facade systems integrating photovoltaic and vertical farming for school buildings in Shenzhen, Beijing, and Shanghai. Key findings include: In Shenzhen, Model B’s UDI increased by 5.1% and Model C by 19.02%, with glare areas reduced by 5.4% and 21.40% and stable thermal comfort (PMV 0.52–0.59) throughout the year. In Beijing, Model B’s UDI decreased by 0.2%, while Model C increased by 6.55%. Glare areas reduced by 2.92% and 14.35%, with improved winter comfort (PMV −0.35 to −0.1). In Shanghai, Model C’s UDI increased by 6.7%, but summer thermal discomfort was notable (PMV up to 1.2). The study finds that PV shading systems combined with vertical farming can provide significant energy savings, reduce greenhouse gas emissions, and offer organic vegetable production within school environments. The findings suggest that integrating these systems into the building envelope can optimize the energy performance of school buildings while improving the comfort and well-being of students and staff.

Details

Title
Integration of Photovoltaic Shading Device and Vertical Farming on School Buildings to Improving Indoor Daylight, Thermal Comfort and Energy Performance in Three Different Cities in China
Author
Weihao Hao 1 ; Xu, Jiahua 2 ; Zhao, Feiyu 3 ; Sohn, Dong-Wook 1 ; Shi, Xuepeng 4 

 The Lab of Architectural & Urban Space Design, Department of Architecture and Architectural Engineering, Yonsei University Seoul Campus, Seoul 03722, Republic of Korea; [email protected] 
 School of Design, University of Pennsylvania, Philadelphia, PA 19104, USA; [email protected] 
 Department of Architecture Built Environment and Construction Engineering, Politecnico di Milano, 20133 Milano, Italy; [email protected] 
 College of Architecture and Urban Planning, Qingdao University of Technology, Qingdao 266033, China 
First page
3502
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3133031505
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.