Full Text

Turn on search term navigation

© 2024 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Traditional disease retrieval and localization for plant leaves typically demand substantial human resources and time. In this study, an intelligent approach utilizing deep hash convolutional neural networks (DHCNN) is presented to address these challenges and enhance retrieval performance. By integrating a collision-resistant hashing technique, this method demonstrates an improved ability to distinguish highly similar disease features, achieving over 98.4% in both precision and true positive rate (TPR) for single-plant disease retrieval on crops like apple, corn and tomato. For multi-plant disease retrieval, the approach further achieves impressive Precision of 99.5%, TPR of 99.6% and F-score of 99.58% on the augmented PlantVillage dataset, confirming its robustness in handling diverse plant diseases. This method ensures precise disease retrieval in demanding conditions, whether for single or multiple plant scenarios.

Details

Title
General retrieval network model for multi-class plant leaf diseases based on hashing
Author
Yang, Zhanpeng; Wu, Jun; Yuan, Xianju; Chen, Yaxiong; Guo, Yanxin
Publication year
2024
Publication date
Nov 26, 2024
Publisher
PeerJ, Inc.
e-ISSN
23765992
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3133033582
Copyright
© 2024 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.