Content area

Abstract

Magnetic flux leakage (MFL) technology is widely used in steel wire rope (SWR) inspection for non-destructive testing. However, accurate defect characterization requires advanced signal processing techniques to handle complex noise conditions and varying defect types. This paper presents a novel adaptive multi-scale Bayesian framework for MFL signal analysis in SWR inspection. Our approach integrates discrete wavelet transform with adaptive thresholding and multi-scale feature fusion, enabling simultaneous detection of minute defects and large-area corrosion. To validate our method, we implemented a four-channel MFL detection system and conducted extensive experiments on both simulated and real-world datasets. Compared with state-of-the-art methods, including long short-term memory (LSTM), attention mechanisms, and isolation forests, our approach demonstrated significant improvements in precision, recall, and F1 score across various tolerance levels. The proposed method showed superior detection performance, with an average precision of 91%, recall of 89%, and an F1 score of 0.90 in high-noise conditions, surpassing existing techniques. Notably, our method showed superior performance in high-noise environments, reducing false positive rates while maintaining high detection sensitivity. While computational complexity in real-time processing remains a challenge, this study provides a robust solution for non-destructive testing of SWR, potentially improving inspection efficiency and defect localization accuracy. Future work will focus on optimizing algorithmic efficiency and exploring transfer learning techniques for enhanced adaptability across different non-destructive testing (NDT) domains. This research not only advances signal processing and anomaly detection technology but also contributes to enhancing safety and maintenance efficiency in critical infrastructure.

Details

1009240
Business indexing term
Title
Adaptive Multi-Scale Bayesian Framework for MFL Inspection of Steel Wire Ropes
Publication title
Machines; Basel
Volume
12
Issue
11
First page
801
Publication year
2024
Publication date
2024
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
e-ISSN
20751702
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2024-11-12
Milestone dates
2024-09-28 (Received); 2024-11-07 (Accepted)
Publication history
 
 
   First posting date
12 Nov 2024
ProQuest document ID
3133147127
Document URL
https://www.proquest.com/scholarly-journals/adaptive-multi-scale-bayesian-framework-mfl/docview/3133147127/se-2?accountid=208611
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-11-27
Database
ProQuest One Academic