Full Text

Turn on search term navigation

© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The research presented in this paper aligns with the advancement of Industry 4.0 by integrating intelligent machine tools and industrial robots within Flexible Manufacturing Systems (FMS). Primarily, a development approach for Digital Twin (DT) is presented, beginning from the design, sizing, and configuration stages of the system and extending through its implementation, commissioning, operation, and simulation-based optimization. The digitization of current industrial processes entails the development of applications based on modern technologies, utilizing state-of-the-art tools and software. The general objective was to create a digital replica of a process to propose optimization solutions through simulation and subsequently achieve virtual commissioning. The practical nature of the research is reflected in the design and implementation of a Digital Twin for a real physical system processing a family of cylindrical parts within an existing experimental FMS. A digital model of the system was created by defining each individual device and piece of equipment from the physical system, so the virtual model operates just like the real one. By implementing the Digital Twin, both time-based and event-based simulations were performed. Through the execution of multiple scenarios, it was possible to identify system errors and collisions, and propose optimization solutions by implementing complex, collaborative-robot equipment where multiple interactions occur simultaneously.

Details

Title
Digital Twin for Flexible Manufacturing Systems and Optimization Through Simulation: A Case Study
Author
Florescu, Adriana  VIAFID ORCID Logo 
First page
785
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20751702
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3133147585
Copyright
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.