Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Amicarbazone (AMZ), a triazolinone herbicide widely applied in agriculture, is known to inhibit photosystem II in target plants, disrupting photosynthesis and causing oxidative stress that leads to weed mortality. Despite its widespread use, the developmental and neurotoxic effects of AMZ on aquatic organisms remain underexplored. This study assesses the impact of AMZ exposure on zebrafish (Danio rerio) embryos/larvae, focusing on developmental toxicity and neurotoxicity. Zebrafish were exposed to AMZ at various concentrations to evaluate survival, malformations, heart rate, and behavior. Significant developmental defects, including reduced survival rates, increased malformations, and decreased heart rates, were observed in zebrafish embryos exposed to AMZ, particularly at higher concentrations. Additionally, behavioral assays revealed decreased locomotor activity, particularly at concentrations of 100 and 200 mg/L. Moreover, AMZ exposure disrupted motor axon formation, oligodendrocyte development, and the expression of key genes involved in neurodevelopment. The downregulation of cholinergic, dopaminergic, and serotonergic signaling pathways was also identified, indicating neurotoxicity. These findings highlight AMZ’s potential to induce both developmental and neurotoxic effects in zebrafish and suggest the need for further research on its long-term ecological impacts.

Details

Title
Neurotoxicity Assessment of Amicarbazone Using Larval Zebrafish
Author
Seung-Hwa Baek 1   VIAFID ORCID Logo  ; Kim, Yeonhwa 2   VIAFID ORCID Logo  ; Kim, Suhyun 3   VIAFID ORCID Logo  ; Park, Hae-Chul 3 

 Medical Science Research Center, Korea University Ansan Hospital, Ansan 15355, Gyeonggi-do, Republic of Korea; [email protected] 
 Zebrafish Translational Medical Research Center, Korea University, Ansan 15355, Gyeonggi-do, Republic of Korea; [email protected] 
 Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 04763, Republic of Korea 
First page
783
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23056304
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3133224164
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.