Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study introduces a novel, robust, and efficient method for the simultaneous quantitative determination of three sunscreen filters, namely, 4-methylbenzylidene camphor, octyl methoxycinnamate, and avobenzone, in a moisturizing sunscreen cream specifically designed for acne-prone skin. The method employs high-performance liquid chromatography with photodiode-array detection, providing a reliable separation of the analytes. Chromatographic separation was achieved using a Fortis Phenyl analytical column (150.0 × 2.1 mm, 5 μm), with isocratic elution at a flow rate of 0.4 mL/min. The mobile phase was composed of a 57/43 (v/v) mixture of acetonitrile/45 mM aqueous ammonium formate solution, ensuring sufficient resolution and peak symmetry for the target compounds. The method was validated comprehensively for critical performance parameters, including linearity, precision, accuracy, and robustness. Linearity was established across a suitable range for all three analytes, with high correlation coefficients. Precision was confirmed with intra-run and total precision coefficients of variation of ≤4.6%, while accuracy assessments yielded a percent recovery between 98.6 and 100.4, for all quality control levels. Additionally, the method was able to effectively separate the sunscreen filters from other cosmetic ingredients, such as [β-(1.3), (1.6)-D-glucan], low molecular weight (LMW) hyaluronic acid and plant extracts ensuring specificity in complex formulations. This straightforward and time efficient sample preparation process, involving methanol extraction followed by serial dilution, makes the method suitable for routine quality control in cosmetic laboratories. The method was successfully applied to the analysis of two different lots of a commercial sunscreen cream, achieving excellent recovery for all filters, ranging between 94.6% and 99.8%, thus demonstrating its reliability and applicability for the quality control of cosmetics.

Details

Title
Advanced HPLC Method with Diode Array Detection Using a Phenyl-Bonded Column for Simultaneous Quantitation of Three Sunscreen Filters in a Moisturizing Sunscreen Cream for Acne-Prone Skin
Author
Feidias, Panayiotis 1 ; Panderi, Irene 1   VIAFID ORCID Logo  ; Georgia Eleni Tsotsou 2   VIAFID ORCID Logo  ; Balatsouka, Ioanna 1 ; Papageorgiou, Spyridon 2 ; Varvaresou, Athanasia 2   VIAFID ORCID Logo 

 Laboratory of Pharmaceutical Analysis, Division of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece; [email protected] (P.F.); [email protected] (I.P.); [email protected] (I.B.) 
 Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, Faculty of Health and Welfare Sciences, University of West Attica, Campus 1, Agiou Spyridonos, 12243 Egaleo, Greece; [email protected] (G.E.T.); [email protected] (S.P.) 
First page
2309
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3133379776
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.