Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Seasonal precipitation forecasting (SPF) is critical for effective water resource management and risk mitigation. Large-scale climate drivers significantly influence regional climatic patterns and forecast accuracy. This study establishes relationships between key climate drivers—El Niño–Southern Oscillation (ENSO), Southern Oscillation Index (SOI), Indian Ocean Dipole (IOD), Real-time Multivariate Madden–Julian Oscillation (MJO), and Multivariate ENSO Index (MEI)—and seasonal precipitation anomalies (rainy, summer, and winter) in Eastern Thailand, utilizing Pearson’s correlation coefficient. Following the establishment of these correlations, the most influential drivers were incorporated into the forecasting models. This study proposed an advanced SPF methodology for Eastern Thailand through a Seasonal WaveNet-LSTM model, which integrates Long Short-Term Memory (LSTM) and Recurrent Neural Networks (RNNs) with Wavelet Transformation (WT). By integrating large-scale climate drivers alongside key meteorological variables, the model achieves superior predictive accuracy compared to traditional LSTM models across all seasons. During the rainy season, the WaveNet-LSTM model (SPF-3) achieved a coefficient of determination (R2) of 0.91, a normalized root mean square error (NRMSE) of 8.68%, a false alarm rate (FAR) of 0.03, and a critical success index (CSI) of 0.97, indicating minimal error and exceptional event detection capabilities. In contrast, traditional LSTM models yielded an R2 of 0.85, an NRMSE of 10.28%, a FAR of 0.20, and a CSI of 0.80. For the summer season, the WaveNet-LSTM model (SPF-1) outperformed the traditional model with an R2 of 0.87 (compared to 0.50 for the traditional model), an NRMSE of 12.01% (versus 25.37%), a FAR of 0.09 (versus 0.30), and a CSI of 0.83 (versus 0.60). In the winter season, the WaveNet-LSTM model demonstrated similar improvements, achieving an R2 of 0.79 and an NRMSE of 13.69%, with a FAR of 0.23, compared to the traditional LSTM’s R2 of 0.20 and NRMSE of 41.46%. These results highlight the superior reliability and accuracy of the WaveNet-LSTM model for operational seasonal precipitation forecasting (SPF). The integration of large-scale climate drivers and wavelet-decomposed features significantly enhances forecasting performance, underscoring the importance of selecting appropriate predictors for climatological and hydrological studies.

Details

Title
Seasonal WaveNet-LSTM: A Deep Learning Framework for Precipitation Forecasting with Integrated Large Scale Climate Drivers
Author
Muhammad Waqas 1   VIAFID ORCID Logo  ; Humphries, Usa Wannasingha 2 ; Phyo Thandar Hlaing 1   VIAFID ORCID Logo  ; Ahmad, Shakeel 3   VIAFID ORCID Logo 

 The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand; [email protected] (M.W.); [email protected] (P.T.H.); Center of Excellence on Energy Technology and Environment (CEE), Ministry of Higher Education, Science, Research and Innovation, Bangkok 10140, Thailand 
 Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand 
 Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; [email protected]; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China 
First page
3194
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3133401070
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.