Content area

Abstract

This paper presents a novel approach for optimal control of nonlinear stochastic systems using infinitesimal generator learning within infinite-dimensional reproducing kernel Hilbert spaces. Our learning framework leverages data samples of system dynamics and stage cost functions, with only control penalties and constraints provided. The proposed method directly learns the diffusion operator of a controlled Fokker-Planck-Kolmogorov equation in an infinite-dimensional hypothesis space. This operator models the continuous-time evolution of the probability measure of the control system's state. We demonstrate that this approach seamlessly integrates with modern convex operator-theoretic Hamilton-Jacobi-Bellman recursions, enabling a data-driven solution to the optimal control problem. Furthermore, our statistical learning framework includes nonparametric estimators for uncontrolled forward infinitesimal generators as a special case. Numerical experiments, ranging from synthetic differential equations to simulated robotic systems, showcase the advantages of our approach compared to both modern data-driven and classical nonlinear programming methods for optimal control.

Details

1009240
Title
Kernel-Based Optimal Control: An Infinitesimal Generator Approach
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 5, 2024
Section
Computer Science; Electrical Engineering and Systems Science; Mathematics; Statistics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-06
Milestone dates
2024-12-02 (Submission v1); 2024-12-05 (Submission v2)
Publication history
 
 
   First posting date
06 Dec 2024
ProQuest document ID
3138995498
Document URL
https://www.proquest.com/working-papers/kernel-based-optimal-control-infinitesimal/docview/3138995498/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-07
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic