Content area

Abstract

Sparse programming is an important tool in robotics, for example in real-time sparse inverse kinematic control with a minimum number of active joints, or autonomous goal selection. However, current approaches are limited to real-time control without consideration of the underlying non-linear problem. This prevents the application to non-linear problems like inverse kinematic planning while the robot autonomously chooses from a set of potential goal positions. Instead, kinematic reachability approximations are used while the robot's whole body motion is considered separately. Furthermore, the sparse constraints are not prioritized for intuitive problem formulation. Lastly, the computational effort of the used standard solvers is cubically dependent on the number of constraints which is problematic in the presence of a large number of possible goals. In this work, we address sparse hierarchical non-linear programs with tools from hierarchical non-linear programming to gain a holistic understanding of the problem at hand. The resulting sequential sparse hierarchical quadratic programming solver scales linearly in the number of constraints and enables the formulation of sparse non-linear equality and inequality constraints on any priority level without feasibility requirements. This enables efficient robot sparse hierarchical inverse kinematic planning and control with autonomous goal selection from a high number of possible goal positions without any reachability approximations.

Details

1009240
Identifier / keyword
Title
Sparse Hierarchical Non-Linear Programming for Sparse Inverse Kinematic Planning and Control with Autonomous Goal Selection
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 2, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-03
Milestone dates
2024-12-02 (Submission v1)
Publication history
 
 
   First posting date
03 Dec 2024
ProQuest document ID
3138997742
Document URL
https://www.proquest.com/working-papers/sparse-hierarchical-non-linear-programming/docview/3138997742/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-04
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic