Content area

Abstract

Neural simulation-based inference is a powerful class of machine-learning-based methods for statistical inference that naturally handles high-dimensional parameter estimation without the need to bin data into low-dimensional summary histograms. Such methods are promising for a range of measurements, including at the Large Hadron Collider, where no single observable may be optimal to scan over the entire theoretical phase space under consideration, or where binning data into histograms could result in a loss of sensitivity. This work develops a neural simulation-based inference framework for statistical inference, using neural networks to estimate probability density ratios, which enables the application to a full-scale analysis. It incorporates a large number of systematic uncertainties, quantifies the uncertainty due to the finite number of events in training samples, develops a method to construct confidence intervals, and demonstrates a series of intermediate diagnostic checks that can be performed to validate the robustness of the method. As an example, the power and feasibility of the method are assessed on simulated data for a simplified version of an off-shell Higgs boson couplings measurement in the four-lepton final states. This approach represents an extension to the standard statistical methodology used by the experiments at the Large Hadron Collider, and can benefit many physics analyses.

Details

1009240
Title
An implementation of neural simulation-based inference for parameter estimation in ATLAS
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 2, 2024
Section
High Energy Physics - Experiment
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-03
Milestone dates
2024-12-02 (Submission v1)
Publication history
 
 
   First posting date
03 Dec 2024
ProQuest document ID
3139000063
Document URL
https://www.proquest.com/working-papers/implementation-neural-simulation-based-inference/docview/3139000063/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-04
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic