It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Ventricular assist devices (VADs) have emerged as an effective clinical tool for offering crucial aid to patients suffering with heart failure. To achieve optimal performance that matches a healthy ventricle, precise design and a thorough understanding of hydraulic and clinical factors are crucial. This research paper presents a comprehensive analysis using computational fluid dynamics (CFD) software ANSYS Fluent at different range of rotational speed and flow rate to examine the performance of an axial blood pump with three different straightener designs: conical, cylindrical, and paraboloid. The primary objective is to assess the impact of these straightener designs on the overall performance of the axial blood pump. Initially, the base axial pump employed conical straightener designs, which were subsequently modified to paraboloid and cylindrical shapes to evaluate their performance. Consistently, the results demonstrated that the paraboloid design outperformed the other designs. Specifically, the axial blood pump equipped with a paraboloid straightener exhibited an increased pressure head and lower intensity of turbulent kinetic energy compared to the other two designs. Additionally, the wall shear stress in the impeller region was lower in the paraboloid design. By employing CFD tool, this study provides valuable insights into the performance of different straightener designs for axial blood pumps. The findings highlight the superiority of the paraboloid design in terms of pressure head and wall shear stress reduction. These results contribute to enhancing the effectiveness and efficiency of left ventricular assist devices (LVADs), ultimately benefiting patients with heart failure.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer