Content area

Abstract

Transformer-based architectures have demonstrated remarkable success across various domains, but their deployment on edge devices remains challenging due to high memory and computational demands. In this paper, we introduce a novel Reuse Attention mechanism, tailored for efficient memory access and computational optimization, enabling seamless operation on resource-constrained platforms without compromising performance. Unlike traditional multi-head attention (MHA), which redundantly computes separate attention matrices for each head, Reuse Attention consolidates these computations into a shared attention matrix, significantly reducing memory overhead and computational complexity. Comprehensive experiments on ImageNet-1K and downstream tasks show that the proposed UniForm models leveraging Reuse Attention achieve state-of-the-art imagenet classification accuracy while outperforming existing attention mechanisms, such as Linear Attention and Flash Attention, in inference speed and memory scalability. Notably, UniForm-l achieves a 76.7% Top-1 accuracy on ImageNet-1K with 21.8ms inference time on edge devices like the Jetson AGX Orin, representing up to a 5x speedup over competing benchmark methods. These results demonstrate the versatility of Reuse Attention across high-performance GPUs and edge platforms, paving the way for broader real-time applications

Details

1009240
Title
UniForm: A Reuse Attention Mechanism Optimized for Efficient Vision Transformers on Edge Devices
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 3, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-04
Milestone dates
2024-12-03 (Submission v1)
Publication history
 
 
   First posting date
04 Dec 2024
ProQuest document ID
3140661897
Document URL
https://www.proquest.com/working-papers/uniform-reuse-attention-mechanism-optimized/docview/3140661897/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-05
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic