Full text

Turn on search term navigation

© 2024. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: The 4-hydroxysesamin (4-HS, a di-tetrahydrofuran lignin) is a modified sesamin that was prepared in the laboratory. This preclinical study was designed to preliminarily investigate the neuroprotective properties of 4-HS.

Methods: In vitro, neuronal injury and inflammation were simulated by oxygen-glucose deprivation and lipopolysaccharide (LPS) exposure in mouse hippocampal neuronal HT22 cell line, and treated with 4-HS and/or metformin (MET, MAPK pathway activator for exploring mechanism). CCK-8, flow cytometry, and enzyme-linked immunosorbent assay were performed to evaluate cell viability, apoptosis, and inflammation. Apoptosis- and pathway-related proteins were detected by Western blotting. Middle cerebral artery occlusion (MCAO) was constructed as a stroke model and treated with 4-HS for in vivo confirmation. Histological staining was used for in vivo evaluation of 4-HS properties.

Results: The 4-HS showed similar anti-inflammatory activity to sesamin but did not affect the cell viability of HT22 cells. In vitro, 4-HS improved the cell viability, ameliorated neuronal apoptosis, along with the reversion of apoptotic proteins (Bax, cleaved-caspase 3/9, Bcl-2) expression and inflammatory cytokines (IL-6, TNF-α, IL-10) in LPS-treated HT22 cells. The 4-HS suppressed the phosphorylation of ERK, JNK, and p38 but the addition of MET reversed 4-HS-induced changes of phenotype and protein expression in LPS-treated cells. In vivo, 4-HS showed apparent improvement in cerebral infarction, brain tissue morphology, neuronal architecture, apoptosis, and inflammation of MCAO mice, and also showed inhibiting effects on the phosphorylation of ERK, JNK, and p38, confirming in vivo results.

Conclusion: In this first pre-clinical study on 4-HS, we preliminarily demonstrated the neuroprotective properties of 4-HS both in cell and animal models, and proposed that the underlying mechanism might be associated with the MAPK pathway.

Details

Title
4-Hydroxysesamin, a Modified Natural Compound, Attenuates Neuronal Apoptosis After Ischemic Stroke via Inhibiting MAPK Pathway
Author
Wang, Lina; Qu, Zhenzhen; Sun, Qian; Mao, Zhuofeng; Si, Peipei; Wang, Weiping
Pages
523-533
Section
Original Research
Publication year
2024
Publication date
2024
Publisher
Taylor & Francis Ltd.
ISSN
1176-6328
e-ISSN
1178-2021
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3141018039
Copyright
© 2024. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.