Content area

Abstract

Young and forming planetesimals experience impacts from particles present in a protostellar disk. Using crater scaling laws, we integrate ejecta distributions for oblique impacts. For impacts at 10 to 65 m/s, expected for impacts associated with a disk wind, we estimate the erosion rate and torque exerted on the planetesimal. We find that the mechanism for angular momentum drain proposed by Dobrovolskis and Burns (1984) for asteroids could operate in the low velocity regime of a disk wind. Though spin-down associated with impacts can facilitate planetesimal collapse, we find that the process is inefficient. We find that angular momentum drain via impacts operates in the gravitational focusing regime, though even less efficiently than for lower mass planetesimals. The angular momentum transfer is most effective when the wind speed is low, the projectile density is high compared to the bulk planetesimal density, and the planetesimal is composed of low-strength material. Due to its inefficiency, we find that angular momentum drain due to impacts within a pebble cloud does not by itself facilitate collapse of single planetesimals.

Details

1009240
Title
Angular Momentum Drain: Despinning Embedded Planetesimals
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 4, 2024
Section
Astrophysics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-05
Milestone dates
2024-12-04 (Submission v1)
Publication history
 
 
   First posting date
05 Dec 2024
ProQuest document ID
3141254867
Document URL
https://www.proquest.com/working-papers/angular-momentum-drain-despinning-embedded/docview/3141254867/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-06
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic