Content area

Abstract

Three-dimensional (3D) objects have wide applications. Despite the growing interest in 3D modeling in academia and industries, designing and/or creating 3D objects from scratch remains time-consuming and challenging. With the development of generative artificial intelligence (AI), designers discover a new way to create images for ideation. However, generative AIs are less useful in creating 3D objects with satisfying qualities. To allow 3D designers to access a wide range of 3D objects for creative activities based on their specific demands, we propose a machine learning (ML) enhanced framework CLAS - named after the four-step of capture, label, associate, and search - to enable fully automatic retrieval of 3D objects based on user specifications leveraging the existing datasets of 3D objects. CLAS provides an effective and efficient method for any person or organization to benefit from their existing but not utilized 3D datasets. In addition, CLAS may also be used to produce high-quality 3D object synthesis datasets for training and evaluating 3D generative models. As a proof of concept, we created and showcased a search system with a web user interface (UI) for retrieving 6,778 3D objects of chairs in the ShapeNet dataset powered by CLAS. In a close-set retrieval setting, our retrieval method achieves a mean reciprocal rank (MRR) of 0.58, top 1 accuracy of 42.27%, and top 10 accuracy of 89.64%.

Details

1009240
Business indexing term
Title
CLAS: A Machine Learning Enhanced Framework for Exploring Large 3D Design Datasets
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 4, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-05
Milestone dates
2024-12-04 (Submission v1)
Publication history
 
 
   First posting date
05 Dec 2024
ProQuest document ID
3141255124
Document URL
https://www.proquest.com/working-papers/clas-machine-learning-enhanced-framework/docview/3141255124/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-06
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic