Content area

Abstract

Outlying observations are frequently encountered in a wide spectrum of scientific domains, posing significant challenges for the generalizability of statistical models and the reproducibility of downstream analysis. These observations can be identified through influential diagnosis, which refers to the detection of observations that are unduly influential on diverse facets of statistical inference. To date, methods for identifying observations influencing the choice of a stochastically selected submodel have been underdeveloped, especially in the high-dimensional setting where the number of predictors p exceeds the sample size n. Recently we proposed an improved diagnostic measure to handle this setting. However, its distributional properties and approximations have not yet been explored. To address this shortcoming, the notion of exchangeability is revived, and used to determine the exact finite- and large-sample distributions of our assessment metric. This forms the foundation for the introduction of both parametric and non-parametric approaches for its approximation and the establishment of thresholds for diagnosis. The resulting framework is extended to logistic regression models, followed by a simulation study conducted to assess the performance of various detection procedures. Finally the framework is applied to data from an fMRI study of thermal pain, with the goal of identifying outlying subjects that could distort the formulation of statistical models using functional brain activity in predicting physical pain ratings. Both linear and logistic regression models are used to demonstrate the benefits of detection and compare the performances of different detection procedures. In particular, two additional influential observations are identified, which are not discovered by previous studies.

Details

1009240
Identifier / keyword
Title
Detection of Multiple Influential Observations on Model Selection
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 4, 2024
Section
Statistics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-05
Milestone dates
2024-12-04 (Submission v1)
Publication history
 
 
   First posting date
05 Dec 2024
ProQuest document ID
3141256594
Document URL
https://www.proquest.com/working-papers/detection-multiple-influential-observations-on/docview/3141256594/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-06
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic