Content area

Abstract

Recent advances in neural recording technology allow simultaneously recording action potentials from hundreds to thousands of neurons in awake, behaving animals. However, characterizing spike patterns in the resulting data, and linking these patterns to behaviour, remains a challenging task. The lack of a rigorous mathematical language for variable numbers of events (spikes) emitted by multiple agents (neurons) is an important limiting factor. We introduce a new mathematical operation to decompose complex spike patterns into a set of simple, structured elements. This creates a mathematical language that allows comparing spike patterns across trials, detecting sub-patterns, and making links to behaviour via a clear distance measure. We apply the method to dual Utah array recordings from macaque prefrontal cortex, where this technique reveals previously unseen structure that can predict both memory-guided decisions and errors in a virtual-reality working memory task. These results demonstrate that this technique provides a powerful new approach to understand structure in the spike times of neural populations, at a scale that will continue to grow more and more rapidly in upcoming years.

Details

1009240
Identifier / keyword
Title
A mathematical language for linking fine-scale structure in spikes from hundreds to thousands of neurons with behaviour
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 5, 2024
Section
Quantitative Biology
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-06
Milestone dates
2024-12-05 (Submission v1)
Publication history
 
 
   First posting date
06 Dec 2024
ProQuest document ID
3141681464
Document URL
https://www.proquest.com/working-papers/mathematical-language-linking-fine-scale/docview/3141681464/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-07
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic