Content area

Abstract

This paper proposes a data-driven model predictive control for multirotor collision avoidance considering uncertainty and an unknown model from a payload. To address this challenge, sparse identification of nonlinear dynamics (SINDy) is used to obtain the governing equation of the multirotor system. The SINDy can discover the equations of target systems with low data, assuming that few functions have the dominant characteristic of the system. Model predictive control (MPC) is utilized to obtain accurate trajectory tracking performance by considering state and control input constraints. To avoid a collision during operation, MPC optimization problem is again formulated using inequality constraints about an obstacle. In simulation, SINDy can discover a governing equation of multirotor system including mass parameter uncertainty and aerodynamic effects. In addition, the simulation results show that the proposed method has the capability to avoid an obstacle and track the desired trajectory accurately.

Details

1009240
Identifier / keyword
Title
Sparse Identification of Nonlinear Dynamics-based Model Predictive Control for Multirotor Collision Avoidance
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 9, 2024
Section
Computer Science; Mathematics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-10
Milestone dates
2024-12-09 (Submission v1)
Publication history
 
 
   First posting date
10 Dec 2024
ProQuest document ID
3142731412
Document URL
https://www.proquest.com/working-papers/sparse-identification-nonlinear-dynamics-based/docview/3142731412/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-11
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic