Content area

Abstract

Recurrent neural networks (RNNs) have recently been extensively applied to model the time-evolution in fluid dynamics, weather predictions, and even chaotic systems thanks to their ability to capture temporal dependencies and sequential patterns in data. Here we present a RNN model based on convolutional neural networks for modeling the nonlinear non-adiabatic dynamics of hybrid quantum-classical systems. The dynamical evolution of the hybrid systems is governed by equations of motion for classical degrees of freedom and von Neumann equation for electrons. The physics-aware recurrent convolutional (PARC) neural network structure incorporates a differentiator-integrator architecture that inductively models the spatiotemporal dynamics of generic physical systems. Validation studies show that the trained PARC model could reproduce the space-time evolution of a one-dimensional semi-classical Holstein model {with comparable accuracy to direct numerical simulations}. We also investigate the scaling of prediction errors with size of training dataset, prediction window, step-size, and model size.

Details

1009240
Identifier / keyword
Title
Recurrent convolutional neural networks for non-adiabatic dynamics of quantum-classical systems
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 9, 2024
Section
Physics (Other); Quantum Physics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-10
Milestone dates
2024-12-09 (Submission v1)
Publication history
 
 
   First posting date
10 Dec 2024
ProQuest document ID
3142733893
Document URL
https://www.proquest.com/working-papers/recurrent-convolutional-neural-networks-non/docview/3142733893/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-01-30
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic