Content area

Abstract

Advancements in computational fluid mechanics have largely relied on Newtonian frameworks, particularly through the direct simulation of Navier-Stokes equations. In this work, we propose an alternative computational framework that employs variational methods, specifically by leveraging the principle of minimum pressure gradient, which turns the fluid mechanics problem into a minimization problem whose solution can be used to predict the flow field in unsteady incompressible viscous flows. This method exhibits two particulary intriguing properties. First, it circumvents the chronic issues of pressure-velocity coupling in incompressible flows, which often dominates the computational cost in computational fluid dynamics (CFD). Second, this method eliminates the reliance on unphysical assumptions at the outflow boundary, addressing another longstanding challenge in CFD. We apply this framework to three benchmark examples across a range of Reynolds numbers: (i) unsteady flow field in a lid-driven cavity, (ii) Poiseuille flow, and (iii) flow past a circular cylinder. The minimization framework is carried out using a physics-informed neural network (PINN), which integrates the underlying physical principles directly into the training of the model. The results from the proposed method are validated against high-fidelity CFD simulations, showing an excellent agreement. Comparison of the proposed variational method to the conventional method, wherein PINNs is directly applied to solve Navier-Stokes Equations, reveals that the proposed method outperforms conventional PINNs in terms of both convergence rate and time, demonstrating its potential for solving complex fluid mechanics problems.

Details

1009240
Title
A Variational Computational-based Framework for Unsteady Incompressible Flows
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 7, 2024
Section
Computer Science; Mathematics; Physics (Other)
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-10
Milestone dates
2024-12-07 (Submission v1)
Publication history
 
 
   First posting date
10 Dec 2024
ProQuest document ID
3142734018
Document URL
https://www.proquest.com/working-papers/variational-computational-based-framework/docview/3142734018/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-11
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic