Content area

Abstract

Application profiling is an indispensable technique for many software development tasks, such as code optimization and memory management, where optimization decisions are tailored to specific program profiles. Unfortunately, modern applications codebases exhibit highly variant behavior across different inputs, creating challenges for conventional profiling approaches that rely on a single execution instance. In this paper, we propose \textbf{Phaedrus}, a new \textit{compiler-assisted deep learning framework} designed to predict dynamic program behaviors across varied execution scenarios, specifically focusing on dynamic function call prediction. Traditional profile-guided optimization methods struggle with the input-dependent variability of modern applications, where profiling on different inputs yields divergent application behaviors. To address this, Phaedrus proposes two new approaches: \textit{Application Profile Generalization}, which uses generative models trained on compressed and augmented \textit{Whole Program Path} (WPP) profiles to predict application behavior under unseen inputs, and \textit{Application Behavior Synthesis}, a profile-less approach where Large Language Models (LLMs) directly infer dynamic functions based on source code \& static compiler analysis, bypassing the need for traditional profiling. Our experiments show that \textit{Phaedrus} can achieve upto \(10^7X\) reduction in WPP profile sizes, can predict dynamic hot functions that cover upto 85-99\% of the execution time, along with an average of \textbf{13.46\%} (upto \textbf{65\%}) reduction in application binary size reduction, without profiles.

Details

1009240
People
Title
Phaedrus: Exploring Dynamic Application Behavior with Lightweight Generative Models and Large-Language Models
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 9, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-11
Milestone dates
2024-12-09 (Submission v1)
Publication history
 
 
   First posting date
11 Dec 2024
ProQuest document ID
3143052544
Document URL
https://www.proquest.com/working-papers/phaedrus-exploring-dynamic-application-behavior/docview/3143052544/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-12
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic