Content area

Abstract

An arbitrary Lagrangian--Eulerian finite element method and numerical implementation for curved and deforming lipid membranes is presented here. The membrane surface is endowed with a mesh whose in-plane motion need not depend on the in-plane flow of lipids. Instead, in-plane mesh dynamics can be specified arbitrarily. A new class of mesh motions is introduced, where the mesh velocity satisfies the dynamical equations of a user-specified two-dimensional material. A Lagrange multiplier constrains the out-of-plane membrane and mesh velocities to be equal, such that the mesh and material always overlap. An associated numerical inf--sup instability ensues, and is removed by adapting established techniques in the finite element analysis of fluids. In our implementation, the aforementioned Lagrange multiplier is projected onto a discontinuous space of piecewise linear functions. The new mesh motion is compared to established Lagrangian and Eulerian formulations by investigating a preeminent numerical benchmark of biological significance: the pulling of a membrane tether from a flat patch, and its subsequent lateral translation.

Details

1009240
Title
Arbitrary Lagrangian--Eulerian finite element method for lipid membranes
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 10, 2024
Section
Condensed Matter; Physics (Other)
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-11
Milestone dates
2024-12-10 (Submission v1)
Publication history
 
 
   First posting date
11 Dec 2024
ProQuest document ID
3143052588
Document URL
https://www.proquest.com/working-papers/arbitrary-lagrangian-eulerian-finite-element/docview/3143052588/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-12
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic