Content area

Abstract

This paper proposes a graph neural network (GNN)-based space multiple-input multiple-output (MIMO) framework, named GSM, for direct-to-cell communications, aiming to achieve distributed coordinated beamforming for low Earth orbit (LEO) satellites. Firstly, a system model for LEO multi-satellite communications is established, where multiple LEO satellites collaborate to perform distributed beamforming and communicate with terrestrial user terminals coherently. Based on the system model, a weighted sum rate maximization problem is formulated. Secondly, a GNN-based method is developed to address the optimization problem. Particularly, the adopted neural network is composed of multiple identical GNNs, which are trained together and then deployed individually on each LEO satellite. Finally, the trained GNN is quantized and deployed on a field-programmable gate array (FPGA) to accelerate the inference by customizing the microarchitecture. Simulation results demonstrate that the proposed GNN scheme outperforms the benchmark ones including maximum ratio transmission, zero forcing and minimum mean square error. Furthermore, experimental results show that the FPGA-based accelerator achieves remarkably low inference latency, ranging from 3.863 to 5.883 ms under a 10-ns target clock period with 8-bit fixed-point data representation.

Details

1009240
Identifier / keyword
Title
GSM: A GNN-based Space-MIMO Framework for Direct-to-Cell Communications
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 10, 2024
Section
Electrical Engineering and Systems Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-11
Milestone dates
2024-12-10 (Submission v1)
Publication history
 
 
   First posting date
11 Dec 2024
ProQuest document ID
3143054347
Document URL
https://www.proquest.com/working-papers/gsm-gnn-based-space-mimo-framework-direct-cell/docview/3143054347/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-12
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic