Content area

Abstract

Database management system (DBMS) configuration debugging, e.g., diagnosing poorly configured DBMS knobs and generating troubleshooting recommendations, is crucial in optimizing DBMS performance. However, the configuration debugging process is tedious and, sometimes challenging, even for seasoned database administrators (DBAs) with sufficient experience in DBMS configurations and good understandings of the DBMS internals (e.g., MySQL or Oracle). To address this difficulty, we propose Andromeda, a framework that utilizes large language models (LLMs) to enable automatic DBMS configuration debugging. Andromeda serves as a natural surrogate of DBAs to answer a wide range of natural language (NL) questions on DBMS configuration issues, and to generate diagnostic suggestions to fix these issues. Nevertheless, directly prompting LLMs with these professional questions may result in overly generic and often unsatisfying answers. To this end, we propose a retrieval-augmented generation (RAG) strategy that effectively provides matched domain-specific contexts for the question from multiple sources. They come from related historical questions, troubleshooting manuals and DBMS telemetries, which significantly improve the performance of configuration debugging. To support the RAG strategy, we develop a document retrieval mechanism addressing heterogeneous documents and design an effective method for telemetry analysis. Extensive experiments on real-world DBMS configuration debugging datasets show that Andromeda significantly outperforms existing solutions.

Details

1009240
Identifier / keyword
Title
Automatic Database Configuration Debugging using Retrieval-Augmented Language Models
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 10, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-11
Milestone dates
2024-12-10 (Submission v1)
Publication history
 
 
   First posting date
11 Dec 2024
ProQuest document ID
3143055023
Document URL
https://www.proquest.com/working-papers/automatic-database-configuration-debugging-using/docview/3143055023/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-12
Database
ProQuest One Academic